Skip to main content
Log in

Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted Kastanozems

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Agriculturally used soils (Kastanozems) of experimental fields in the Mashavera Valley in southeast Georgia show various degrees of trace metal contamination (Cd, Cu, and Zn). Therefore, one part of the soils was remediated with iron grit. The effects of the remediation in comparison to nonremediated soils on microbial diversity and activity were analyzed with the single-strand conformation polymorphism (SSCP) and microbial respiratory activity. All topsoils were characterized by neutral to weakly alkaline pH values, high contents of Corg, and clay. The total contents ranged between 0.46 and 5.89 mg kg−1 for Cd, between 1.19 and 81.4 mg kg−1 for Cu, and between 210 and 976 mg kg−1 for Zn. Basal respiration was significantly (p ≤ 0.05) lower in the heavily contaminated soils as compared to the weakly contaminated and control soils. Phylogenetic analyses of the DNA bands found 40 operational taxonomic units with ≥98 % sequence identity. The phylum Acidobacteria dominated with 57.7 %. Other groups detected were Proteobacteria (α (2.8 %), β (8.5 %), γ (14.1 %), δ (4.2 %)), Bacteroidetes (5.6 %), Firmicutes (4.2 %), Actinobacteria (1.4 %), and Nitrospira (1.4 %). Furthermore, the results of the SSCP analysis and the Shannon–Weaver indices suggested that microbial diversity was lower in the heavily contaminated soils, but DNA band profiles of the remediated soils were in higher number than in the untreated soils. Due to the remediation, a recovery of the microbial diversity seems attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamo P, Zampella M, Gianfreda L, Renella G, Rutigliano FA, Terribile F (2006) Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environ Pollut 144:308–316

    Article  CAS  PubMed  Google Scholar 

  • Almås A, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Biochem 36:805–813

    Article  Google Scholar 

  • Ascher J, Ceccherini MT, Pantani OL, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 41:351–359

    Article  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil on microbial processes and population (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Bardgett RD, Speir TW, Ross DJ, Yeats GW, Kettles HA (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Mitra A, Chakrabarti K, Chattopadhyay DJ, Chakraborty A, Kim K (2008) Effect of heavy metals on microbial biomass and activities in century old landfill soil. Environ Monit Assess 136:299–306

    Article  CAS  PubMed  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

    Article  CAS  Google Scholar 

  • Brümmer GW, Gerth J, Herms U (1986) Heavy metal species, mobility, and availability in soils. Z Pflanzenernaehr Bodenkd 149:382–398

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • D’Ascoli R, Rao MA, Adamo P, Renella G, Landi L, Rutigliano FA, Terribile F, Gianfreda L (2006) Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation. Environ Pollut 144:317–326

    Article  PubMed  Google Scholar 

  • de Boer TE, Taş N, Braster M, Temminghoff EJM, Röling WFM, Roelofs D (2012) The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation. Environ Sci Technol 46:60–68

    Article  PubMed  Google Scholar 

  • Díaz-Raviña M, Bååth E, Frostegård Å (1994) Multiple heavy metal tolerance of soil bacterial communities and its measurement by thymidine incorporation technique. Appl Environ Microbiol 60:2238–2247

    PubMed Central  PubMed  Google Scholar 

  • DIN EN ISO 14688 (2003) Geotechnical investigation and testing—identification and classification of soil—Part 1: Identification and description. Deutsches Institut für Normung, Beuth Verlag GmbH, Berlin

    Google Scholar 

  • DIN ISO 10390 (2005) Soil quality—fetermination of pH. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • DIN ISO 10694 (1995) Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). Deutsches Institut für Normung Beuth, Verlag GmbH, Berlin

    Google Scholar 

  • DIN ISO 11277 (2002) Soil quality—determination of particle size distribution in mineral soil material - Method by using sieving and sedimentation. Deutsches Institut für Normung, Berlin

    Google Scholar 

  • DIN ISO 11465 (1993) Soil quality—determination of dry matter and water content on a mass basis—Gravimetric method. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • DIN ISO 11466 (1995) Soil quality—extraction of trace elements soluble in aqua regia. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • DIN ISO 16072 (2005) Soil quality—laboratory methods for determination of microbial soil respiration. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • DIN ISO 17155 (2009) Soil quality—determination of abundance and activity of the soil microflora using respiration curves. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • DIN ISO 19730 (2009) Soil quality—extraction of trace elements from soil using ammonium nitrate solution. Deutsches Institut für Normung Beuth, Berlin

    Google Scholar 

  • Dohrmann AB, Tebbe CC (2004) Microbial community analysis by PCR-single-stranded conformation polymorphism (PCR-SSCP). In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Netherlands, pp 809–838

    Google Scholar 

  • Eichner CA, Erb RW, Timmis KN, Wagner-Döbler I (1999) Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community. Appl Environ Microbiol 65:102–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felix-Henningsen P, Urushadze TF, Narimanidze EI, Wichmann L, Steffens D, Kalandadze BB (2007) Heavy metal pollution of soils and food crops due to mining wastes in the Mashavera River Valley. Bull Georgian Natl Acad Sci 175:97–106

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbs. Soil Biol Biochem 41:2031–2037

    Article  CAS  Google Scholar 

  • Gomes NCM, Landi L, Smalla K, Nannipieri P, Brookes PC, Renella G (2010) Effects of Cd- and Zn-enriched sewage sludge on soil bacterial and fungal communities. Ecotoxicol Environ Saf 73:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  PubMed  Google Scholar 

  • Hanauer T, Felix-Henningsen P, Steffens D, Kalandadze B, Navrozashvili L, Urushadze T (2011) In situ stabilization of metals (Cu, Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia. Plant Soil 341:193–208

    Article  CAS  Google Scholar 

  • Hornburg V, Brümmer GW (1993) Verhalten von Schwermetallen in Böden 1. Untersuchungen der Schwermetallmobilität. Z Pflanzenernaehr Bodenkd 156:467–477

    Article  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Huber T (2003) Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53:289–293

    Article  CAS  PubMed  Google Scholar 

  • Jinping J, Wu L, Li N, Luo Y, Liu L, Zhao Q, Zhang L, Christie P (2010) Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur J Soil Biol 46:18–26

    Article  Google Scholar 

  • Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78:2106–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly JJ, Häggblöm MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Killham K (1985) A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ Pollut 38:283–294

    Article  CAS  Google Scholar 

  • Kumpiene J, Guerri G, Landi L, Pietramellara G, Nannipieri P, Renella G (2009) Microbial biomass, respiration, and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicol Environ Saf 72:15–119

    Article  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430–1437

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mench M, Renella G, Gelsomino A, Landi L, Nannipieri P (2006) Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environ Pollut 144:24–31

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Gloeckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quaiser A, Ochsenreiter T, Lanz C, Schuster SC, Treusch AH, Eck J, Schleper C (2003) Acidobacteria from a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575

    Article  CAS  PubMed  Google Scholar 

  • Renella G, Mench M, van der Lelie D, Pietramellara G, Ascher J, Ceccherini MT, Landi L, Nannipieri P (2004a) Hydrolase activity, microbial biomass, and community structure in long-term Cd-contaminated soils. Soil Biol Biochem 36:443–451

    Article  CAS  Google Scholar 

  • Renella G, Adamo P, Bianco MR, Landi L, Violante P, Nannipieri P (2004b) Availability and speciation of cadmium added to a calcareous soil under various managements. Eur J Soil Sci 55:123–133

    Article  CAS  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Microbial activity and hydrolase activities during decomposition of root exudates by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    Article  CAS  Google Scholar 

  • Renella G, Landi L, Valori F, Nannipieri P (2007) Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and sandy soil. Appl Soil Ecol 36:124–129

    Article  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilization of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  PubMed  Google Scholar 

  • Sandaa R-A, Torsvik V, Enger Ø, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sandaa R-A, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16s rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spain AM, Krumholz LR, Elshahed MS (2009) Abundance, composition, diversity, and novelty of soil Proteobacteria. ISME J 3:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry—an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley, New York, pp 171–222

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol 24:279–285

    Article  CAS  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    Article  CAS  PubMed  Google Scholar 

  • WRB (2006) World Reference Base for Soil Resources 2006—a Framework for International Classification, Correlation and Communication. World Soil Resources Reports 103, FAO, Rome

  • Zeien H, Brümmer GW (1989) Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitt Dtsch Bodenkd Ges 59/I:505–510

    Google Scholar 

Download references

Acknowledgments

The authors thank the Volkswagen Foundation for financing the study. We are grateful to our Georgian colleagues Besik Kalandadze, Levan Navrozashvili, and Tengiz Urushadze from the Ivane Javakhishvili Tbilisi State University, our colleagues Kristina Kampmann, Rita Geißler-Plaum, Irina Kramer, Claudia Kammann, Leonard Böhm, and Sylvie Drahorad from the Justus Liebig University and Simon Berkowicz from the Hebrew University of Jerusalem for their support. We also thank the reviewers for thoroughly reviewing our manuscript and for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hülya Kaplan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 1.39 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, H., Ratering, S., Hanauer, T. et al. Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted Kastanozems. Biol Fertil Soils 50, 735–744 (2014). https://doi.org/10.1007/s00374-013-0890-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0890-7

Keywords

Navigation