Skip to main content
Log in

Diversity of native rhizobia isolated in south Brazil and their growth promotion effect on white clover (Trifolium repens) and rice (Oryza sativa) plants

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In this study, rhizobia strains isolated from white clover (Trifolium repens) root nodules were evaluated in an effort to identify an efficient nitrogen-fixing rhizobia strain that can also improve the growth of rice plants (Oryza sativa). White clover plants were collected from seven sites in south Brazil, and 78 native rhizobia isolates were obtained. The genetic diversity analysis of those isolates was carried out by BOX-polymerase chain reaction. Overall, the native rhizobia isolated showed a high genetic diversity, but when the bacterial isolates from the same site were compared, the diversity was lower. One native rhizobia, POA3 (isolated from the Porto Alegre locality), was able to promote the growth of both plants and is therefore a good candidate for new inoculant formulation. Finally, we can conclude that the community of native rhizobia symbiont of white clover plants in southern Brazil is highly diverse and the growth promotion effect of rhizobia inoculation on rice plants was more pronounced in a poor nutrient substrate condition than in a rich nutrient substrate condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akers HA (1983) Isolation of the siderophore schizokinen from soil of rice fields. Appl Environ Microbiol 45:1704–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Khaliel AS (2010) Effects of arbuscular mycorrhization in sterile and non-sterile soils. Trop Life Sci Res 21:55–70

    Google Scholar 

  • Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alves AO, Xavier AS, Viana IO, Mariano RLR, Silveira EBS (2010) Colonization dynamics of Acidovorax citrulli in melon. Trop Plant Pathol 35:368–372

    Article  Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp J, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia LMP, Vargas LK (2012) Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl Soil Ecol 63:15–22

    Article  Google Scholar 

  • Ashraf MA, Asif M, Zaheer A, Malik A, Ali Q, Rasool M (2013) Plant growth promoting rhizobacteria and sustainable agriculture: a review. Afric J Microbiol Res 7:704–709

    CAS  Google Scholar 

  • Beck D, Duc G (1991) Improving N2,-fixation in faba bean: Rhizobium inoculation and N nutrition. Opt Mediter 10:97–103

    Google Scholar 

  • Bennett AJ, Leifert C, Whipps JM (2003) Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biol Biochem 35:1565–1573

    Article  CAS  Google Scholar 

  • Binde DR, Menna P, Bangel EV, Barcellos FG, Hungria M (2009) rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl Microbiol Biotechnol 83:897–908

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agronom J 92:880–886

    Article  Google Scholar 

  • Caballero-Mellado J, Martinez-Romero E (1999) Soil fertilization limits the genetic diversity of rhizobium in bean nodules. Symbiosis 26:771–121

    Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Cho Y, Hidaka K, Mineta T (2003) Evaluation of white clover and rye grown in rotation with no-tilled rice. Field Crops Res 83:237–250

    Article  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Costa PB, Beneduzi A, Souza R, Schoenfeld R, Vargas LK, Passaglia LMP (2013) The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant Soil 368:267–280

    Article  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afric J Biotech 9:8619–8629

    CAS  Google Scholar 

  • Duodu S, Nsiah E, Bhuvaneswari T, Svenning M (2006) Genetic diversity of a natural population of Rhizobium leguminosarum biovar trifolii analysed from field nodules and by a plant infection technique. Soil Biol Biochem 38:1162–1165

    Article  CAS  Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52

    Article  Google Scholar 

  • Felske A, Rheims H, Wokerink A, Stackebrandt E, Akkermans DL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grasslands soils. Microbiology 143:2983–2989

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MC, Andrade DDS, Maria L, Chueire DO, Takemura M, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  • Galleguillos C, Aguirre C, Barea MJ, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42:243–70

    Article  CAS  Google Scholar 

  • Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277

    Article  CAS  Google Scholar 

  • Giongo A, Ambrosini A, Vargas LK, Freire JRJ, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from South Brazilian fields. App Soil Ecol 38:261–269

    Article  Google Scholar 

  • Giongo A, Beneduzi A, Ambrosini A, Vargas LK, Stroschein MR, Eltz FL, Bodanese-Zanettini MH, Passaglia LMP (2010) Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil. R Bras C Solo 34:361–369

    Article  CAS  Google Scholar 

  • Giraud E, Xu L, Chaintreuil C, Gargani D, Gully D, Sadowsky MJ (2013) Photosynthetic Bradyrhizobium sp. strain ORS285 is capable of forming nitrogen-fixing root nodules on soybeans (Glycine max). Appl Environ Microbiol 79:2459–2462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski Reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagen M, Alfred P, Selbitschka W (1997) The persistence of bioluminescent Rhizobium meliloti strains L1 (RecA) and L33 (RecA +) in non-sterile microcosms depends on the soil type, on the co-cultivation of the host legume alfalfa and on the presence of an indigenous R. meliloti population. Plant Soil 188:257–266

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis Version 2.09. Palaeont Electr 4(1):9

    Google Scholar 

  • Handley B, Hedges AJ, Beringer JE (1998) Importance of host plants for detecting the population diversity of Rhizobium leguminosarum biovar viciae in soil. Soil Biol Biochem 30:241–249

    Article  CAS  Google Scholar 

  • Hu X-J, Lin X, Wang J, Chu H, Yin R, Zhang J (2009) Population size and specific potential of P-mineralizing and -solubilizing bacteria under long-term P-deficiency fertilization in a sandy loam soil. Pedobiologia 53:49–58

    Article  CAS  Google Scholar 

  • IRRI, AfricaRice, CIAT (2010). Global Rice Science Partnership (GRiSP). November 2010.

  • ISTA. International rules for seed testing. Seed Science and Technology. Zurich, 1996. 335 p.

  • Jonah N, Chemining’wa GN, Muthomi JW, Shibairo SI (2012) Effect of rhizobium inoculation and nitrogen fertilizer application on growth, nodulation and yield of two garden pea genotypes. J Anim Plant Sci 15:2147–2156

    Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agricult Ecosyst Environ 74:65–76

    Article  Google Scholar 

  • Krasova-Wade T, Diouf O, Ndoye I, Sall CE, Braconnier S, Neyra M (2006) Water-condition effects on rhizobia competition for cowpea nodule occupancy. Afric J Biotech 5:1457–1463

    CAS  Google Scholar 

  • Laheurte F, Berthelin J (1988) Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Soil 105:11–17

    Article  CAS  Google Scholar 

  • Ledgard SF (1991) Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows, estimated using 15N methods. Plant Soil 131:215–223

    Article  CAS  Google Scholar 

  • Ledgard SF, Steele KW (1992) Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 141:137–153

    Article  CAS  Google Scholar 

  • Li W, Raoult D, Fournier PE (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Article  CAS  PubMed  Google Scholar 

  • Maguire JD (1962) Speed of germination—aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2:176–177

    Article  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Meliani A, Bensoltane A, Mederbel K (2012) Microbial diversity and abundance in soil: related to plant and soil type. Am J Plant Nutr Fert Tech 2:10–18

    Article  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  CAS  PubMed  Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afric J Biotech 9:6001–6009

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Europ J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nesheim L, Boller BC (1991) Nitrogen fixation by white clover when competing with grasses at moderately low temperatures. Plant Soil 133:47–56

    Article  CAS  Google Scholar 

  • Peng S, BiswasJC LJK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agronomy J 4:925–929

    Article  Google Scholar 

  • Prayitno J, Stefaniak J, Mciver J, Weinman JJ, Dazzo FB, Ladha JK, Barraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535

    Article  Google Scholar 

  • Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–252

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    Article  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarruge JR (1975) Soluções nutritivas. Summa Phytopathologica, Piracicaba 1(3):231–234

    CAS  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Ann Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Seck PA, Diagne A, Mohanty S, Wopereis MCS (2012) Crops that feed the world 7: rice. Food Sec 4:7–24

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Somasegaram P, Hoben MJ (1985) Methods in legume-rhizobium technology. NIFTAL, Hawaii, p 367

    Google Scholar 

  • Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2012) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Article  Google Scholar 

  • Sparks DL (1996) Methods of soil analysis: chemical methods. SSSA Book Series, Madison, WI

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Swanepoel PA, Botha PR, Truter WF, Surridge-Talbot AK (2011) The effect of soil carbon on symbiotic nitrogen fixation and symbiotic Rhizobium populations in soil with Trifolium repens as host plant. Afric J Range For Sci 28:121–127

    Article  Google Scholar 

  • Temprano FJ, Albareda M, Camacho M, Daza A, Santamaria C, Nombre Rodriguez-Navarro D (2002) Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol 5:81–86

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia LMP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. Rev Bras C Solo 33:1227–1235

    Article  Google Scholar 

  • Versalovicj SM, Bruijn FJD, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Meth Mol Cel Biol 5:25–40

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX (2010) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Intern J Syst Microbiol 62:2264–2271

    Google Scholar 

  • Zhang X, Harper TR, Karsisto M, Lindstrom K (1991) Diversity of rhizobium bacteria isolated from the root nodules of leguminous trees. Intern J Syst Bact 41:104–113

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Molec Biol Rev 63:968–989

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants and fellowships from the International Foundation for Science (IFS, Sweden), Fundação Estadual de Amparo à Pesquisa (FAPERGS, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and INCT da Fixação Biológica do Nitrogênio (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane M. P. Passaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granada, C.E., Arruda, L., Lisboa, B.B. et al. Diversity of native rhizobia isolated in south Brazil and their growth promotion effect on white clover (Trifolium repens) and rice (Oryza sativa) plants. Biol Fertil Soils 50, 123–132 (2014). https://doi.org/10.1007/s00374-013-0840-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0840-4

Keywords

Navigation