Skip to main content
Log in

Microbial dynamics in Mediterranean Moder humus

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

There is a growing interest in the links between humus forms and soil biota, and little is known about these links in Mediterranean ecosystems. Culture-independent techniques, such as DNA extraction followed by DGGE and enzyme activities, allowed us to compare microbial communities in two horizons of a forest soil in different seasonal conditions. Direct in situ lysis was applied for extraction of DNA from soil; intracellular DNA was separated from extracellular and used to represent the composition of microflora. The aims were to describe how biochemical and microbiological parameters correlate with topsoil properties in typical Mediterranean Moder humus. Changes in bacterial and fungal community composition were evident from DGGE profiles. Degrees of similarity and clustering correlation coefficients showed that the seasonal conditions may affect the composition and activity of bacterial and fungal communities in the OH horizon, while in the E horizon the two communities were hardly modified. In the same season, OH and E horizons showed a different composition of bacterial and fungal communities and different enzyme activities, suggesting similar behaviour of eubacteria and fungi relatively to all the variables analysed. Evidently, different organic carbon content in soil horizons influenced microflora composition and microbial activities involved in the P and N cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P, Pietramellara G (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868

    Article  CAS  Google Scholar 

  • Andreetta A, Ciampalini R, Moretti P, Vingiani S, Poggio G, Tescari F, Matteucci G, Carnicelli S (2011) Forest humus as a potential indicator of soil carbon storage in Mediterranean environments. Biol Fertil Soils 47:31–40

    Article  CAS  Google Scholar 

  • Aponte C, Marañón T, Garcia VL (2010) Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochemestry 101:77–92

    Article  CAS  Google Scholar 

  • Ascher J, Ceccherini MT, Agnelli A, Borgogni F, Guerri G, Nannipieri P, Pietramellara G (2009) Sequential extraction and genetic fingerprinting of a forest soil metagenome. Appl Soil Ecol 42:176–181

    Article  Google Scholar 

  • Bardgett RD, Leemans DK, Cook R, Hobbs PJ (1997) Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biol Biochem 29:1285–1294

    Article  CAS  Google Scholar 

  • Bardgett RD, Lovell RD, Hobbs PJ, Jarvis SC (1999) Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem 31:1021–1030

    Article  CAS  Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38:3463–3473

    Article  CAS  Google Scholar 

  • Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171–181

    Article  Google Scholar 

  • Bottner P (1985) Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material. Soil Biol Biochem 17:329–337

    Article  CAS  Google Scholar 

  • Brodie E, Suzanne E, Clipson N (2003) Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol Ecol 1523:1–10

    Google Scholar 

  • Bussotti F, Borghini F, Celesti C, Leonzio C, Cozzi A, Bettini D, Ferretti M (2003) Leaf shedding, crown condition and element return in two mixed holm oak forests in Tuscany, central Italy. Forest Ecol Manag 176:273–285

    Article  Google Scholar 

  • Caravaca F, Masciandaro G, Ceccanti B (2002) Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res 68:23–30

    Article  Google Scholar 

  • Carletti P, Vendramin E, Pizzeghello D, Concheri G, Zanella A, Nardi S, Squartini A (2009) Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant Soil 315:47–65

    Article  CAS  Google Scholar 

  • Ceccanti B, Garcia C, Masciandaro G, Macci C, Doni S (2006) Soil bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397

    Article  CAS  Google Scholar 

  • Ceccherini MT, Ascher J, Agnelli A, Borgogni F, Pantani OL, Pietramellara G (2009) Experimental discrimination and molecular characterization of the extracellular soil DNA fraction. Antonie van Leeuw 96:653–657

    Article  CAS  Google Scholar 

  • Certini G, Campbell CD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128

    Article  CAS  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Systematics 11:233–260

    Article  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Costantini EAC, Urbano F, L’Abate G (2004) Soil regions of Italy. http://www.soilmaps.it/download/csi-BrochureSR_a4.pdf

  • Davy AJ, Taylor K (1974) Seasonal patterns of nitrogen availability in the Chiltern hills. J Ecol 62:793–807

    Article  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Ekelund F, Ronn R, Christensen S (2001) Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33:475–481

    Article  CAS  Google Scholar 

  • Farley RA, Fitter AH (1999) Temporal and spatial variation in soil resources in deciduous woodland. J Ecol 87:688–696

    Article  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiol 143:2983–2989

    Article  CAS  Google Scholar 

  • Fritze H, Pietikainen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51:565–573

    CAS  Google Scholar 

  • García C, Hernández T, Costa F (1994) Microbial activity in soils under Mediterranean environmental conditions. Soil Biol Biochem 26:1185–1191

    Article  Google Scholar 

  • García C, Hernandez T, Pascual JA, Moreno JL, Ros M (2000) Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In: Garcia C, Hernandez MT (eds) Research and perspectives of soil enzymology in Spain. CEBAS-CSIC, Murcia, pp 93–143

    Google Scholar 

  • Garcia-Ruiz R, Ochoa V, Hinojosa MB, Carreira JA (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural. Soil Biol Biochem 40:2137–2145

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1, Physical and mineralogical methods. Agronomy Monograph N. 9, 2nd edn. Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leiros MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Goberna M, Insam H, Pascual JA, Sánchez J (2005) Storage effects on the community level physiological profiles of Mediterranean forest soils. Soil Biol Biochem 37:173–178

    Article  CAS  Google Scholar 

  • Green RN, Trowbridge RL, Klinka K (1993) Towards a taxonomic classification of humus forms. Forest Sci Monograph 29:1–49

    Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 43:35–43

    Article  PubMed  CAS  Google Scholar 

  • Gupta PL, Rorison IH (1975) Seasonal differences in the availability of nutrients down a podzolic profile. J Ecol 63:521–534

    Article  CAS  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633

    Article  PubMed  CAS  Google Scholar 

  • Hirobe M, Koba K, Tokuchi N (2003) Dynamics of the internal soil nitrogen cycles under moder and mull forest floor types on a slope in a Cryptomeria japonica D. Don plantation. Ecol Res 18:53–64

    Article  Google Scholar 

  • IUSS, ISRIC, FAO (2006) World reference base for soil resources—a framework for international classification, correlation and communication. World Soil Resources Report 103, FAO, Rome, Italy.

  • Jabiol B, Brêthes A, Ponge JF, Toutain F, Brun JJ (2007) L’humus sous toutes ses formes. ENGREF seconde édition, Nancy

    Google Scholar 

  • Karroum M, Guillet B, Laggoun-Défarge F, Disnar J, Lottier N, Villemin G, Toutain F (2005) Morphological evolution of beech litter (Fagus sylvatica L.) and biopolymer transformation (lignin, polysaccharides) in a mull and a moder, under temperate climate (Fougères forest, Britany, France). [Evolution morphologique des litières de hêtre (Fagus sylvatica L.) et transformation des biopolymères, lignine et polysaccharides, dans un mull et un moder, sous climat tempéré (forêt de Fougères, Bretagne, France)] Can J. Soil Sci 85:405–416

    Google Scholar 

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • Klinka K, Green RN, Trowbridge RL, Lowe LE (1981) Taxonomic classification of humus forms in ecosystems of British Columbia. Ministry of Forests, Province of British Columbia

    Google Scholar 

  • Kowalchuk G (1999) Fungal community analysis using denaturing gradient gel electrophoresis (DGGE). In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, 3.4.6. Kluwer, Dordrecht, pp 1–16

  • Kowalchuk GA, Stienstra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Molecular analysis of ammonia-oxidising bacteria in soil of successional grasslands of the Drentsche A (The Netherlands). FEMS Microbiol Ecol 31:207–215

    Article  PubMed  CAS  Google Scholar 

  • Krämer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188

    Article  Google Scholar 

  • Krave AS, Lin B, Braster M, Laverman AM, van Straalen NM, Röling WFM, van Verseveld HW (2002) Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java. Indonesia Environ Microbiol 4:361–373

    Article  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    Article  PubMed  CAS  Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000) Influence of cadmium on the metabolic quotient, L-:D-glutamic acid respiration ratio and enzyme activity: microbial biomass ratio under laboratory conditions. Biol Fertil Soils 32:8–16

    Article  CAS  Google Scholar 

  • Latorre MJ, Peña R, Pita C, Botana A, García S, Herrero C (1999) Chemometric classification of honeys according to their type. II. Metal content data. Food Chem 66:263–268

    Article  CAS  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lazzaro A, Hartmann M, Blaser P, Widmer F, Schulin R, Frey B (2006) Bacterial community structure and activity in different Cd-treated forest soils. FEMS Microbiol Ecol 58:278–292

    Article  PubMed  CAS  Google Scholar 

  • Machulla G, Bruns MA, Scow KM (2005) Microbial properties of mine spoil materials in the initial stages of soil development. Soil Sci Soc Am J 69:1069–1077

    Article  CAS  Google Scholar 

  • Margesin R, Jud M, Tscherko D, Schinner F (2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol 67:208–218

    Article  PubMed  CAS  Google Scholar 

  • Marinari S, Masciandaro G, Ceccanti B, Grego S (2008) Kinetics of acid phosphatase in calcium chloride extractable soil organic matter. Soil Biol Biochem 40:2076–2078

    Article  CAS  Google Scholar 

  • Marstorp H, Guan X, Gong P (2000) Relationship between dsDNA, chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biol Biochem 32:879–882

    Article  CAS  Google Scholar 

  • Masciandaro G, Ceccanti B, Ronchi V, Bauer C (2000) Kinetic parameters of dehydrogenase in the assessment of the response of soil to treatments by vermicompost and inorganic fertilisers. Biol Fertil Soils 32:479–483

    Article  CAS  Google Scholar 

  • Monokrousos N, Papatheodorou EM, Diamantopoulos JD, Stamou GP (2004) Temporal and spatial variability of soil chemical and biological variables in a Mediterranean shrubland. Forest Ecol Manag 202:83–91

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarrese E (1980) Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Grego S (1990) Ecological significance of biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nilsson SI, Miller GH, Miller JD (1982) Forest growth as possible cause of soil and water acidification and examination of the concepts. Oikos 39:40–49

    Article  Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant–litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agricultural Circular 939

  • Peltier A, Ponge JF, Jordana R, Arino A (2001) Humus forms in Mediterranean scrublands with Aleppo Pine. Soil Sci Soc Am J 65:884–896

    Article  CAS  Google Scholar 

  • Phillips JD (2009) Soils as extended composite phenotypes. Geoderma 149:143–151

    Article  Google Scholar 

  • Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to diversity. Soil Biol Biochem 35:935–945

    Article  CAS  Google Scholar 

  • Rao AV, Tarafdar JC (1992) Seasonal changes in available phosphorus and different enzyme activities in arid soil. Ann Arid Zone 31:185–189

    Google Scholar 

  • Ross DJ, Speir TW, Kettles HA, Mackay AD (1995) Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow release P and S fertilizer. Soil Biol Biochem 27:1431–1443

    Article  CAS  Google Scholar 

  • Sadaka N, Ponge JF (2003) Climatic effects on soil trophic networks and the resulting humus profiles in holm oak (Quercus rotundifolia) forests in the High Atlas of Morocco as revealed by correspondence analysis. Eur J Soil Sci 54:767–777

    Article  Google Scholar 

  • Sardans J, Penuelas J, Ogaya R (2008) Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. Eur J Soil Biol 44:509–520

    Article  CAS  Google Scholar 

  • Sevink J, Imeson AC, Verstraten JM (1989) Humus form development and hillslope runoff, and the effects of fire and management, under Mediterranean forest in NE-Spain. Catena 16:461–475

    Article  Google Scholar 

  • Skujins J (1976) Extracellular enzymes in soil. Critical Rev Microbiol 4:383–421

    Article  CAS  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  PubMed  CAS  Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. USDA Soil Conservation Service, Washington

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non photosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Stromberger ME, Shah Z, Westfall DG (2011) High specific activity in low microbial biomass soils across a no-till evapotranspiration gradient in Colorado. Soil Biol Biochem 43:97–105

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: R.W. Weaver, J.S. Angle, P.S. Bottomly, D. Bezdicek, S. Smith, M.A. Tabatabai and A. Wollum (eds) Methods of soil analysis: microbial and biochemical properties, soil science society of America, Madison, pp 775–833

  • Tagger S, Périssol C, Criquet S, Aubert G, Neville P, Le Petit J, Toutain F (2008) Characterization of an amphimull under Mediterranean evergreen oak forest (Quercus ilex): micromorphological and biodynamic descriptions. Can J Forest Res 38:268–277

    Article  Google Scholar 

  • Taylor A, De Felice J, Havill DC (1982) Seasonal variation in nitrogen availability and utilization in acidic and calcareous soil. New Phytol 92:141–152

    Article  CAS  Google Scholar 

  • Trap J, Laval K, Akpa-Vinceslas M, Gangneux C, Bureau F, Decaëns T, Aubert M (2011) Humus macro-morphology and soil microbial community changes along a 130-yr-old Fagus sylvatica chronosequence. Soil Biol Biochem 43:1553–1562

    Article  CAS  Google Scholar 

  • Ulrich B (1983) A concept of forest ecosystem stability and of acid deposition as driving force for destabilization. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. D Reidel, Dordrecht, pp 1–29

    Chapter  Google Scholar 

  • Vacca A (2000) Effect of land use on forest floor and soil of a Quercus suber L. forest in Gallura (Sardinia, Italy). Land Degrad Dev 11:167–180

    Article  Google Scholar 

  • van Breemen N, Finzi AC (1998) Plant-soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42:1–19

    Article  Google Scholar 

  • van Wesemael B, Verstraten JM (1993) Organic acids in a moder type humus profile under a Mediterranean oak forest. Geoderma 59:75–88

    Article  Google Scholar 

  • van Wesemael B, Verstraten JM, Sevink J (1995) Pedogenesis by clay dissolution on acid, low grade metamorphic rocks under Mediterranean forests in southern Tuscany (Italy). Catena 24:105–125

    Article  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance of Virginia Giansoldati for the ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Andreetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreetta, A., Macci, C., Ceccherini, M.T. et al. Microbial dynamics in Mediterranean Moder humus. Biol Fertil Soils 48, 259–270 (2012). https://doi.org/10.1007/s00374-011-0622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0622-9

Keywords

Navigation