Skip to main content
Log in

LjLHT1.2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic and organic forms of N and translocate them, via arginine, from the extra- to the intraradical mycelium, where N is transferred to the plant as inorganic N compounds such as ammonium. However, several putative amino acid transporters (AATs) with an altered expression in Lotus japonicus mycorrhizal roots were recorded in a previous microarray-based investigation, which led to the question of whether a transfer of organic N, mainly in the form of amino acids, could occur in AM roots. Here, we have characterized an AAT gene (LjLHT1.2) that encodes for lysine–histidine–transporter (LHT)-type amino acid transporter. We show that it is induced in mycorrhizas, but not in nodulated roots. By using in situ hybridization and laser microdissection technology, the corresponding transcripts have been demonstrated to be located above all in arbusculated cells but also in the non-colonized cells of the root cortex. The gene expression resulted to be differentially regulated by the availability of the N sources. Furthermore, functional experiments, via heterologous expression in yeast, have demonstrated that the protein was a high-affinity amino acid transporter. Taken together, the results show that LjLHT1.2 may allow the uptake of energy-rich N compounds, such as amino acids, towards the cortical cells. We suggest that LjLHT1.2 could be involved in complex mechanisms that guarantee the re-uptake and recycle of amino acids and which are particularly efficient in mycorrhizal roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular–arbuscular mycorrhiza in grasses. Can J Bot 67:2505–2513

    Article  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosyst 139:8–15

    Google Scholar 

  • Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary–developmental perspective. Trends Plant Sci 13:492–498

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    PubMed  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    Article  PubMed  CAS  Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Bush DR (1997) LHT1, a lysine- and histidine-specific amino acid transporter in Arabidopsis. Plant Physiol 115:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J 29:717–731

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  PubMed  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:1–19

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Guether M, Balestrini R, Hannah MA, Udvardi MK, Bonfante P (2009a) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    Article  PubMed  CAS  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009b) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Vieweg ME, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  PubMed  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    Article  PubMed  Google Scholar 

  • Lanfranco L, Guether M, Bonfante P (2011) Arbuscular mycorrhizas and N acquisition by plants. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, Chichester, pp 52–68

    Chapter  Google Scholar 

  • Langdale JA (1993) In situ hybridization. In: Freeling M, Walbot V (eds) The maize handbook. Springer, Berlin, pp 165–180

    Google Scholar 

  • Liu JY, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123

    Article  PubMed  CAS  Google Scholar 

  • Ludewig U, Koch W (2008) Amino acid transporters in plants. In: Jaiwal PK, Singh RP, Dhankher OP (eds) Plant membrane and vacuolar transporters. CABI, Wallingford, pp 267–282

    Chapter  Google Scholar 

  • Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W (2002) High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis. J Biol Chem 277:45338–45346

    Article  PubMed  CAS  Google Scholar 

  • Ott T, van Dongen JT, Gunther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume Lotus japonicus. DNA Res 15:227–239

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G (2004) Molecular and biochemical characterization of plant transporters involved in the cellular homeostasis of Mn and Fe. Der Andere, Osnabrück

    Google Scholar 

  • Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M, Sato S, Kaneko T, Tabata S, Parniske M (2007) Proteases in plant root symbiosis. Phytochem 68:111–121

    Article  CAS  Google Scholar 

  • Takeda N, Sato S, Asamizu E, Tabata S, Parniske M (2009) Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J 58:766–777

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Torres M-A, Rigau J, Puigdomènech P, Stiefel V (1995) Specific distribution of mRNAs in maize growing pollen tubes observed by whole-mount in situ hybridization with non-radioactive probes. Plant J 8:317–321

    Article  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Mycorrhizae: physiology and genetics. INRA, Paris, pp 217–221

    Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. TIBS 27:139–147

    PubMed  CAS  Google Scholar 

  • Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46:177–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Marco Giovannetti for his help in the LMD experiments and Joan Doidy for his assistance in the uptake measurements. We would also like to thank Dr. Wolfgang Koch and Friederike Ladwig for the preliminary tests for the yeast complementation and for providing us with the plasmid constructs for the amino acids transporter control.

Financial sources

M.G. was supported by the EU as part of the INTEGRAL project (Marie Curie Research Training Network, Project Reference 505227), by the BIOBIT-CIPE Project and by the German Research Foundation—DFG (Project Reference GU1204/1-1). The research in P.B.’s group was supported by grants to P.B. from the INTEGRAL Project and the BIOBIT-CIPE Project, Converging Technologies, 2007. D.W. was supported by the ANR (TRANSMUT project) and the Burgundy Regional Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Guether.

Additional information

Mike Guether and Veronica Volpe equally contributed to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guether, M., Volpe, V., Balestrini, R. et al. LjLHT1.2—a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus . Biol Fertil Soils 47, 925–936 (2011). https://doi.org/10.1007/s00374-011-0596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0596-7

Keywords

Navigation