Skip to main content
Log in

Spraying of oxytetracycline and gentamicin onto field-grown coriander did not affect the abundance of resistant bacteria, resistance genes, and broad host range plasmids detected in tropical soil bacteria

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Horticultural supplements containing oxytetracycline and gentamicin, two clinically relevant biocides, are widely marketed to prevent or control infections by bacterial phytopathogens. Despite their regular consumption in the world’s less developed countries, it is unknown whether exposure of tropical farmlands to these drugs results in an enrichment of resistant bacteria, resistance genes, and/or mobile genetic elements in the soil. These concerns were investigated under field conditions by repeatedly spraying recommended amounts of a commercial product containing oxytetracycline-HCl, and gentamicin-\({\text{SO}}^{{ - 2}}_{4} \) onto two coriander plots. Subsequent to five applications within 16 months, composite soil samples from control and treated sections were compared with respect to the abundance of resistant bacteria and the prevalence of conserved nucleotide sequences from tetracycline efflux proteins, tetracycline ribosomal protection proteins, four different families of gentamicin-modifying enzymes, and broad host range plasmids of the IncP-1 and IncQ incompatibility groups. The isolation frequency of oxytetracycline- and gentamicin-resistant bacteria and the detection rate of the aforementioned genes and elements were unrelated to application of the supplement. Despite the omnipresence of sequences from IncP-1 plasmids, conjugative plasmids conferring resistance to oxytetracycline or gentamicin were not captured in biparental matings. The widespread occurrence of resistant bacteria and resistance genes at the beginning of the trial emerges as a reasonable explanation for the lack of anticipated responses. Moreover, we assume that the biocides applied were inactivated by biotic and abiotic factors under tropical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aamczyk M, Jagura-Burdzy G (2003) Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol 50:425–453

    Google Scholar 

  • Agerso Y, Sengelov G, Jensen LB (2004) Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland. Environ Int 30:117–122

    Article  PubMed  CAS  Google Scholar 

  • Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32

    Article  PubMed  CAS  Google Scholar 

  • Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67:292–299

    Article  PubMed  CAS  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (2000) Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Gent 236:471–482

    Google Scholar 

  • Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628

    PubMed  Google Scholar 

  • Halling-Sørensen B, Sengeløv G, Tjørnelund T (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 42:263–271

    Article  PubMed  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Hoper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  PubMed  CAS  Google Scholar 

  • Hart C, Kariuki S (1998) Antimicrobial resistance in developing countries. BMJ 317:647–650

    PubMed  CAS  Google Scholar 

  • Heuer H, Krögerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard J-M, Guillaume G, Karagouni A, Nikolakopoulou D, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbiol Ecol 42:289–302

    Article  CAS  Google Scholar 

  • Hugenholz P, Goebel BM, Pace N (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriology 180:4765–4774

    Google Scholar 

  • Hund-Rinke K, Simon M, Lukow T (2004) Effects of tetracycline on the soil microflora: Function, diversity, resistance. J Soils Sediments 1:11–16

    Article  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52:5–7

    Article  PubMed  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 401:443–465

    Article  CAS  Google Scholar 

  • Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC (2003) Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47:883–888

    Article  PubMed  CAS  Google Scholar 

  • Nikolakopoulou TL, Egan S, van Overbeek LS, Guillaume G, Heuer H, Wellington EMH, van Elsas JD, Collard J-M, Smalla K, Karagouni AD (2005) PCR detection of oxytetracycline resistance genes otr(A) and otr(B) in tetracycline-resistant streptomycete isolates from diverse habitats. Curr Microbiol 51:211–216

    Article  PubMed  CAS  Google Scholar 

  • Nwosu VC (2001) Antibiotic resistance with particular reference to soil microorganisms. Res Microbiol 152:421–430

    Article  PubMed  CAS  Google Scholar 

  • Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239:623–663

    Article  PubMed  CAS  Google Scholar 

  • Pukall R, Tschäpe H, Smalla K (1996) Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol Ecol 20:53–66

    Article  CAS  Google Scholar 

  • Rabølle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40:715–722

    Article  PubMed  Google Scholar 

  • Rawlings DE, Tietze E (2001) Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 65:481–496

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  PubMed  CAS  Google Scholar 

  • Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    Article  PubMed  CAS  Google Scholar 

  • Schmidt F, Klopfer-Kaul I (1984) Evolutionary relationship between Tn21-like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Mol Gen Genet 197:109–119

    Article  PubMed  CAS  Google Scholar 

  • Schmitt H, Stoob K, Hamscher G, Smit E, Seinen W (2006) Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb Ecol 51:267–276

    Article  PubMed  Google Scholar 

  • Schnabel EL, Jones AL (1999) Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 65:4898–4907

    PubMed  CAS  Google Scholar 

  • Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 42:165–175

    Article  CAS  Google Scholar 

  • Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1993) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13:47–58

    Article  CAS  Google Scholar 

  • Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E (2000a) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Krögerrecklenfort E, Heuer H, Dejonghe W, Top E, Osborn M, Niewint J, Tebbe C, Barr M, Bailey M, Greated A, Thomas C, Turner S, Young P, Nikolakopoulou D, Karagouni A, Wolters A, van Elsas JD, Drønen K, Sandaa R, Borin S, Brabhu J, Grohmann E, Sobecky P (2000b) PCR-based detection of mobile genetic elements in total community DNA. Microbiology 146:1256–1257

    PubMed  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S, Beck IC (2005) Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59:457–465

    Article  PubMed  CAS  Google Scholar 

  • Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–445

    Article  PubMed  CAS  Google Scholar 

  • Vidaver AK (2002) Uses of antimicrobials in plant agriculture. Clin Infec Dis 34:S107–S110

    Article  CAS  Google Scholar 

  • Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

César Rodríguez received grants of the Hans Mühlenhoff-Stiftung and was recipient of a fellowship from the German Academic Exchange Service (DAAD). The authors are grateful to M.Sc. Amy Wang from the Centro de Investigación en Protección de Cultivos (CIPROC) of the University of Costa Rica and to Dr. Fernando García at the Centro de Investigación en Enfermedades Tropicales (CIET) of the same university for invaluable assistance and supervision regarding the field experiment, sample collection, and project logistics. Escherichia coli strains carrying tet(A), tet(B), tet(C), tet(H), tet(M), tet(O), and tet(Q) were a gift of Dr. Andrea Patterson at the Rowett Research Institute (Aberdeen, UK). Dr. Sophie Bertrand at the Bacteriology Division of the Scientific Institute of Public Health (Brussels, Belgium) is acknowledged for donating us E. coli EC64 and E. coli EC65 for detection of tet(G) and tet(L). The strain Pseudomonas sp. GFP2 was kindly obtained from Dr. Andreas Schlüter (Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Rodríguez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Sánchez, C., Altendorf, K., Smalla, K. et al. Spraying of oxytetracycline and gentamicin onto field-grown coriander did not affect the abundance of resistant bacteria, resistance genes, and broad host range plasmids detected in tropical soil bacteria. Biol Fertil Soils 44, 589–596 (2008). https://doi.org/10.1007/s00374-007-0242-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-007-0242-6

Keywords

Navigation