Skip to main content
Log in

Graphs With Few Matching Roots

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We determine all graphs whose matching polynomials have at most five distinct zeros. As a consequence, we find new families of graphs which are determined by their matching polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayoobi F., Omidi G.R., Tayfeh-Rezaie B.: A note on graphs whose signless Laplacian has three distinct eigenvalues. Linear Multilinear Algebra 59, 701–706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beezer R.A., Farrell E.J.: The matching polynomial of a regular graph. Discrete Math 137, 7–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges W.G., Mena R.A.: Multiplicative cones—a family of three eigenvalue graphs. Aequationes Math 22, 208–214 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer A.E., Haemers W.H.: Spectra of Graphs. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  5. van Dam, E.R.: Graphs with Few Eigenvalues. An Interplay between Combinatorics and Algebra. Center Dissertation Series 20, Ph.D. thesis, Tilburg University (1996)

  6. van Dam E.R.: Nonregular graphs with three eigenvalues. J. Comb. Theory Ser. B 73, 101–118 (1998)

    Article  MATH  Google Scholar 

  7. van Dam E.R., Haemers W.H.: Graphs with constant μ and \({\bar\mu}\) . Discrete Math 182, 293–307 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. van Dam E.R., Spence E.: Small regular graphs with four eigenvalues. Discrete Math 189, 233–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doob M.: Graphs with a small number of distinct eigenvalues. Ann NY Acad Sci 175, 104–110 (1970)

    MathSciNet  MATH  Google Scholar 

  10. Doob M.: On characterizing certain graphs with four eigenvalues by their spectrum. Linear Algebra Appl 3, 461–482 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Godsil C.D.: Algebraic Combinatorics. Chapman and Hall Mathematics Series. Chapman and Hall, London (1993)

    Google Scholar 

  12. Godsil C.D.: Algebraic matching theory. Electron. J. Combin. 2, #R8 (1995)

  13. Godsil C.D., Gutman I.: On the theory of the matching polynomial. J Graph Theory 5, 137–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heilmann O.J., Lieb E.H.: Monomers and dimers. Phys. Rev. Lett. 24, 1412–1414 (1970)

    Article  Google Scholar 

  15. Heilmann O.J., Lieb E.H.: Theory of monomer–dimer systems. Comm. Math. Phys. 25, 190–232 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klin M., Muzychuk M.: On graphs with three eigenvalues. Discrete Math. 189, 191–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ku C.Y., Chen W.: An analogue of the Gallai–Edmonds structure theorem for non-zero roots of the matching polynomial. J. Comb. Theory Ser. B 100, 119–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kunz H.: Location of the zeros of the partition function for some classical lattice systems. Phys. Lett. (A) 32, 311–312 (1970)

    Article  Google Scholar 

  19. Noy M.: Graphs determined by polynomial invariants. Theoret. Comput. Sci. 307, 365–384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghorbani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorbani, E. Graphs With Few Matching Roots. Graphs and Combinatorics 29, 1377–1389 (2013). https://doi.org/10.1007/s00373-012-1186-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1186-7

Keywords

Mathematics Subject Classification

Navigation