Skip to main content
Log in

A lightweight generative adversarial network for single image super-resolution

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Single image super-resolution is a digital image processing technique that can obtain a corresponding high-resolution image from a low-resolution image. The growth of deep convolutional neural networks in the field of computer vision has greatly benefited recent research on super-resolution. However, the convolutional neural networks often have a large number of parameters, which increases the model’s computational cost and limits its application in practical situations. In order to solve the problem, we propose a lightweight generative adversarial network model using the inception block. According to extensive experimental results on image super-resolution using four widely used datasets, our model not only achieves high scores on the peak signal to noise ratio/structural similarity index matrix, but also enables faster computation compared to other image super-resolution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The dataset used in this paper can be downloaded from https://paperswithcode.com/paper/single-image-super-resolution-from.

References

  1. Ahn, N., Kang, B., Sohn, K.-A.: Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network, pp. 256–272. Springer International Publishing, Cham (2018)

    Google Scholar 

  2. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of European Conference on Computer Vision (2014). https://doi.org/10.1007/978-3-319-10593-2_13

  3. Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016)

  4. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

  5. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

  6. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: IEEE 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010)

  7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  8. Chen, W., Liu, C., Yan, Y., Jin, L., Sun, X., Peng, X.: Guided dual networks for single image super-resolution. IEEE Access 8, 93608–93620 (2020). https://doi.org/10.1109/ACCESS.2020.2995175

    Article  Google Scholar 

  9. Li, X., Du, Z.-H., Huang, Y., Tan, Z.: A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J. Photogramm. Remote. Sens. 179, 14–34 (2021)

    Article  Google Scholar 

  10. Ma, J., Xu, H., Jiang, J., Mei, X., Zhang, X.: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Trans. Image Process. 29, 4980–4995 (2020)

    Article  Google Scholar 

  11. Song, H., Wang, M., Zhang, L., Li, Y., Jiang, Z., Yin, G.: S2GAN: sonar-image super-resolution based on generative adversarial network. Vis. Comput. 37(8), 2285–2299 (2021). https://doi.org/10.1007/s00371-020-01986-3

    Article  Google Scholar 

  12. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)

    Article  Google Scholar 

  13. Aràndiga, F.: A nonlinear algorithm for monotone piecewise bicubic interpolation. Appl. Math. Comput. 272(1), 100–113 (2016)

    MathSciNet  Google Scholar 

  14. Fattal, R.: Image upsampling via imposed edge statistics. Acm Trans. Gr. 26(3), 951–957 (2007). https://doi.org/10.1145/1276377.1276496

    Article  Google Scholar 

  15. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711

    Article  MathSciNet  Google Scholar 

  16. Boor, C.D.: Bicubic spline interpolation. J. Math. Phys. 41(3), 212–218 (1962)

    Article  MathSciNet  Google Scholar 

  17. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012). https://doi.org/10.1109/TIP.2012.2208977

    Article  MathSciNet  Google Scholar 

  18. Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6(11), 1715–1726 (1989). https://doi.org/10.1364/josaa.6.001715

    Article  Google Scholar 

  19. Yang, X., Zhang, Y., Zhou, D., Yang, R.: An improved iterative back projection algorithm based on ringing artifacts suppression. Neurocomputing 162, 171–179 (2015). https://doi.org/10.1016/j.neucom.2015.03.055

    Article  Google Scholar 

  20. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: European Conference on Computer Vision, pp. 391–407 (2016)

  21. Zhang, Y., Li, K., Wang, L., Zhong, B., Fu, Y.: Image Super-Resolution Using Very Deep Residual Channel Attention Networks. Springer International Publishing, Cham (2018)

    Book  Google Scholar 

  22. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206 (2015)

  23. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1637–1645 (2016)

  24. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 5835–5843 (2017)

  25. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1132–1140 (2017)

  26. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018). https://doi.org/10.1109/CVPR.2018.00262.

  27. Jian, S., Xu, Z., Shum, H.Y.: Image super-resolution using gradient profile prior. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587659.

  28. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia (2019)

  29. Wang, X., Wang, Q., Zhao, Y., Yan, J., Fan, L., Chen, L.: Lightweight single-image super-resolution network with attentive auxiliary feature learning. ACCV (2020)

  30. Wang, F., Yin, D., Song, R.: Image super-resolution using only low-resolution images. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02646-4

    Article  Google Scholar 

  31. Wang, Z., Chen, J., Hoi, S.C.H.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020). https://doi.org/10.1109/TPAMI.2020.2982166

    Article  Google Scholar 

  32. Shi, W., Du, H., Mei, W., Ma, Z.: (SARN) spatial-wise attention residual network for image super-resolution. Vis. Comput. 37, 1569–1580 (2021). https://doi.org/10.1007/s00371-020-01903-8

    Article  Google Scholar 

  33. Yang, X., Zhu, Y., Guo, Y., Zhou, D.: An image super-resolution network based on multi-scale convolution fusion. Vis. Comput. 38(12), 4307–4317 (2021). https://doi.org/10.1007/s00371-021-02297-x

    Article  Google Scholar 

  34. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., et al.: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, pp. 63–79. Springer International Publishing, Cham (2019)

    Google Scholar 

  35. Lu, Z., Chen, Y.: Single image super-resolution based on a modified U-net with mixed gradient loss. SIViP 16, 1143–1151 (2022)

    Article  Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014). arXiv preprint arXiv:1409.1556.

  37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.48550/arXiv.1512.03385.

  38. He, K., Zhang, X., Ren, S., & Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123.

  39. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826 (2016)

  40. Muhammad, W., Bhutto, Z., Ansari, A., Memon, M.L., Kumar, R., Hussain, A., et al.: Multi-path deep CNN with residual inception network for single image super-resolution. Electronics 10(16), 1979 (2021)

    Article  Google Scholar 

  41. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  42. Zhou, W., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xupeng Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Xie, X., Ye, C. et al. A lightweight generative adversarial network for single image super-resolution. Vis Comput 40, 41–52 (2024). https://doi.org/10.1007/s00371-022-02764-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02764-z

Keywords

Navigation