Skip to main content
Log in

A novel data hiding by image interpolation using edge quad-tree block complexity

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Data hiding method embed secret data inside a cover medium. Image quality and capacity plays a significant role in the performance of data hiding. The motivation of this paper is to improve the interpolation technique and bit plane data hiding method using edge quad-tree block complexity. Edges in the cover image are identified using edge detector and are further partitioned using quad-tree. The edges are smooth regions divided into smaller blocks in order to obtain good embedding capacity, whereas the rough regions involve those regions other than the edges and are kept as larger blocks to avoid distortion. Each quad-tree block is implemented with up-sampling interpolation based on edges and every pixel is divided into two-bit plane namely high and low bit plane. In each bit plane, two different data are embedded based on their hiding capacity. The hiding capacity of the high bit plane is calculated by two prediction levels namely Pixel Value Differencing and block complexity. In low bit plane, Least Significant Bit method is used for hiding the data. Experimental results demonstrate that the proposed method significantly improved the embedding performance, capacity and also resist to attacks when compared to other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, D.C., Tsai, W.H.: A steganographic method for images by pixel-value differencing. Pattern Recogn. Lett. 24(10), 1613–1626 (2003)

    Article  MATH  Google Scholar 

  2. Wu, H.C., Wu, N.I., Tsai, C.S., Huang, M.S.: Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proc. Vision Image Signal Process. 152(5), 611–615 (2005)

    Article  Google Scholar 

  3. Yang, C.H., Weng, C.Y., Tso, H.K., Wang, S.J.: A data hiding scheme using the varieties of pixel-value differencing in multimedia images. J. Syst. Softw. 84(4), 669–678 (2011)

    Article  Google Scholar 

  4. Yang, C.H., Wang, S.J., Weng, C.Y., Sun, H.M.: Information hiding technique based on blocked PVD. J. Inf. Manag. 15(3), 29–48 (2008)

    Google Scholar 

  5. Liu, J.C., Shih, M.H.: Generalizations of pixel-value differencing steganography for data hiding in images. Fundam. Inf. 83(3), 319–335 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Liao, X., Wen, Q.Y., Zhang, J.: A steganographic method for digital images with four-pixel differencing and modified LSB substitution. J. Vis. Commun. Image Represent. 22(1), 1–8 (2011)

    Article  Google Scholar 

  7. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16, 354–361 (2006)

    Article  Google Scholar 

  8. Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 89, 1129–1143 (2009)

    Article  MATH  Google Scholar 

  9. Wang, J., Mao, N., Chen, X.: Multiple histograms based reversible data hiding by using FCM clustering. Signal Process. 159, 193–203 (2019)

    Article  Google Scholar 

  10. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13, 890–896 (2003)

    Article  Google Scholar 

  11. Ou, B., Li, X., Zhao, Y.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22, 5010–5021 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jung, K.H., Yoo, K.Y.: Data hiding method using image interpolation. Comput. Stand Interfaces. 31, 465–470 (2009)

    Article  Google Scholar 

  13. Lee, C.F., Huang, Y.L.: An efficient image interpolation increasing payload in reversible data hiding. Expert Syst. Appl. 39, 6712–6719 (2012)

    Article  Google Scholar 

  14. Chang, Y.T., Huang, C.T., Lee, C.F., Wang, S.J.: Image interpolating based data hiding in conjunction with pixel-shifting of histogram. J. Supercomput. 66, 1093–1110 (2013)

    Article  Google Scholar 

  15. Malik, A., Sikka, G., Verma, H.K.: A reversible data hiding scheme for interpolated images based on pixel intensity range. Multimed. Tools Appl. 79, 18005–18031 (2020)

    Article  Google Scholar 

  16. Peng, F., Li, X., Yang, B.: Improved k-pass PVO-based reversible data hiding. Digit. Signal Process. 25(2), 255–265 (2014)

    Article  Google Scholar 

  17. Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process. Image Commun. 29(7), 760–772 (2014)

    Article  Google Scholar 

  18. Di F, Zhang M., Liao X., Liu J.: High-fidelity reversible data hiding by Quadtree-based pixel value ordering, Multimed Tools Appl, (2019)

  19. Shanableh T., Recursive quad-tree block partitioning for data embedding in images, SN Computer Science, 309(2020)

  20. Parah, S.A., Sheikh, J.A., Akhoon, J.A., Loan, N.A., Bhat, G.M.: Information hiding in edges: a high capacity information hiding technique using hybrid edge detection. Multimed. Tools Appl. 77, 185–207 (2018)

    Article  Google Scholar 

  21. Canny J.: A computational approach to edge detection. IEEE Transactions on pattern analysis and Machine Intelligence. 8(6), (1986)

  22. Weber, A.G.: The USC-SIPI image database: version 5, Original release, Signal and Image Processing Institute. University of Southern California. Department of Electrical Engineering. 5 (1997)

  23. Huang, C.T., Tsai, M.Y., Lin, L.C.: VQ-based data hiding in IoT networks using two-level encoding with adaptive pixel replacements. J. Supercomput. 74, 4295–4314 (2018)

    Article  Google Scholar 

  24. Kim, C., Shin, D., Leng, L., Yang, C.N.: Lossless data hiding for absolute moment block truncation coding using histogram modification. J. Real-Time Image Process. 14, 101–114 (2018)

    Article  Google Scholar 

  25. Lee, C.-F., Huang, Y.-L.: An efficient image interpolation increasing payload in reversible data hiding. Expert Syst. Appl. 39(8), 6712–6719 (2012)

    Article  Google Scholar 

  26. Hassan, F.S., Gutub, A.: Efficient image reversible data hiding technique based on interpolation optimization. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05529-3

    Article  Google Scholar 

  27. Hassan, F.S., Gutub, A.: Efficient reversible data hiding multimedia technique based on smart image interpolation. Multimedia Tools Appl. 79, 30087–30109 (2020)

    Article  Google Scholar 

  28. Chen, Y.-Q., Sun, W.-J., Li, L.-Y., Chang, C.-C., Wang, X.: An efficient general data hiding scheme based on image interpolation. J. Inf. Security Appl. 54, 102584 (2020)

    Google Scholar 

  29. Chandler, D.M., Hemami, S.: SVSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16, 2284–2298 (2007)

    Article  MathSciNet  Google Scholar 

  30. Sharmila, T.S., Ramar, K., SreeRenga Raja, T.: Impact of Applying preprocessing Techniques for Improving Classification Accuracy. Signal Image and Video Processing Springer-Verlag, London Limited. 8(1), 149–157 (2013)

    Article  Google Scholar 

  31. Sree Sharmila, T., Ramar, K., SreeRenga Raja, T.: Comparative analysis of satellite image preprocessing techniques. J. Comput. Sci. 9(2), 176–182 (2013)

    Article  Google Scholar 

  32. Sharmila, T.S., Ramar, K., Raja, T.S.R.: Developing an Efficient Technique for Satellite Image Denoising and Resolution Enhancement for Improving Classification Accuracy. J. Electron. Imag. 22(1), (2013)

  33. Sharmila T.S., Ramar, K.: Efficient analysis of hybrid directional lifting technique for satellite image denoising. Signal Image and Video Processing. Springer-Verlag London Limited. 8(7), 1399–1404 2012)

  34. Roselin Kiruba, R., Sree Sharmila, T.: Secure data hiding by fruit fly optimization improved hybridized seeker algorithm. Multidimension. Syst. Signal Process. 32(2), 405–430 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. RoselinKiruba, R., Sharmila, T.S.: Hiding data in videos using optimal selection of key-frames. International conference on computer. Communication, and signal processing (ICCCSP). 1–6(2018)

  36. RoselinKiruba, R., Sharmila, T.S.: Performance analysis in secured image encryption and data hiding using LSB algorithm. IEEE International Conference on Circuits and Systems (ICCS). 112–117(2017)

  37. Wang, Z., Bovik, A.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26, 98–117 (2009)

    Article  Google Scholar 

  38. Sharma, P.K., Basavaraju, S., Sur, A.: Deep learning-based image de-raining using discrete Fourier transformation. Vis. Comput. 37, 2083–2096 (2021). https://doi.org/10.1007/s00371-020-01971-w

    Article  Google Scholar 

  39. Guo, T., Xu, X.: Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning. Vis. Comput. 37, 2069–2081 (2021)

    Article  Google Scholar 

  40. Vinolin, V., Sucharitha, M.: Dual adaptive deep convolutional neural network for video forgery detection in 3D lighting environment. Vis Comput 37, 2369–2390 (2021). https://doi.org/10.1007/s00371-020-01992-5

    Article  Google Scholar 

  41. Kumar, R.J.R., Sundaram, M., Arumugam, N.: Facial emotion recognition using subband selective multilevel stationary wavelet gradient transform and fuzzy support vector machine. Vis Comput 37, 2315–2329 (2021). https://doi.org/10.1007/s00371-020-01988-1

    Article  Google Scholar 

  42. Qu, H., Wang, Y.: The application of interactive methods under swarm computing and artificial intelligence in image retrieval and personalized analysis. Vis. Comput. 37, 2331–2340 (2021). https://doi.org/10.1007/s00371-020-01989-0

    Article  Google Scholar 

  43. Qiu, Y., Hao, P.: Self-supervised deep subspace clustering network for faces in videos. Vis. Comput. 37, 2253–2261 (2021). https://doi.org/10.1007/s00371-020-01984-5

    Article  Google Scholar 

  44. Mhala, N.C., Pais, A.R.: A secure visual secret sharing (VSS) scheme with CNN-based image enhancement for underwater images. Vis. Comput. 37, 2097–2111 (2021). https://doi.org/10.1007/s00371-020-01972-9

    Article  Google Scholar 

  45. Mohtavipour, S.M., Saeidi, M., Arabsorkhi, A.: A multi-stream CNN for deep violence detection in video sequences using handcrafted features. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02266-4

    Article  Google Scholar 

  46. Sun, Q., Chen, Y., Tao, W., et al.: A GAN-based approach toward architectural line drawing colorization prototyping. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02219-x

    Article  Google Scholar 

  47. Changa, K.-C., Changa, C.-P., Huangb, P.S., Tua, T.-M.: A novel image steganographic method using Tri-way pixel-value differencing. J. Multimedia 3, 37–44 (2008)

    Google Scholar 

  48. Roselinkiruba, R., Sharmila, T.S.: Performance evaluation of encryption algorithm using fruit fly optimization improved hybridized seeker and PVD algorithm. Int. J. Inf. Technol. (2021). https://doi.org/10.1007/s41870-021-00774-z

    Article  Google Scholar 

  49. Mukherjee, N., Paul, G., Saha, S.K., Burman, D.: A PVD based high capacity steganography algorithm with embedding in non-sequential position. Multimedia Tools Appl 79, 13449–13479 (2020)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this research work. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. RoselinKiruba.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RoselinKiruba, R., Sharmila, T.S. A novel data hiding by image interpolation using edge quad-tree block complexity. Vis Comput 39, 59–72 (2023). https://doi.org/10.1007/s00371-021-02312-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02312-1

Keywords

Navigation