Skip to main content
Log in

Data-driven subspace enrichment for elastic deformations with collisions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an efficient data-driven enrichment approach to adaptively enhance the expressivity of subspaces for elastic deformations with novel collisions. In general, subspace integration method (also known as model reduction) for elastic deformations can greatly increase simulation speed. However, when the deformations are beyond the expressivity of subspaces such as novel external collisions, obvious artifacts will appear. First, we construct a position-based database of subspaces through full-space collided simulations. We then select small sets of basis vectors to enrich existing subspaces for incoming collided deformations. We also demonstrate that cubature can easily be exploited by our subspace database, and we propose a novel post-processing scheme for refining the cubature weights for more accurate and faster deformations. Our method can achieve well-approximated full-space deformations when novel collisions occur. From our experiment results, we further show that our method is applicable to large deformations and large steps in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. An, S.S., Kim, T., James, D.L.: Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph. 27(5), 165:1–165:10 (2008)

    Article  Google Scholar 

  2. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24(3), 982–990 (2005)

    Article  Google Scholar 

  3. Barbič, J., Sin, F., Grinspun, E.: Interactive editing of deformable simulations. ACM Trans. Graph. 31(4), 70:1–70:8 (2012)

    Google Scholar 

  4. Barbič, J., Zhao, Y.: Real-time large-deformation substructuring. ACM Trans. Graph. 30(4), 91:1–91:8 (2011)

    Google Scholar 

  5. Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18(6), 914–924 (2012)

    Article  Google Scholar 

  6. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R.W., Cole, F., Meyer, M., DeRose, T., Gross, M.: Subspace clothing simulation using adaptive bases. ACM Trans. Graph. 33(4), 105:1–105:9 (2014)

    Article  Google Scholar 

  7. Harmon, D., Zorin, D.: Subspace integration with local deformations. ACM Trans. Graph. 32(4), 107:1–107:10 (2013)

    Article  MATH  Google Scholar 

  8. Hauser, K.K., Shen, C., O’Brien, J.F.: Interactive deformation using modal analysis with constraints. In: Proceedings of Graphics Interface, pp. 247–256. Canadian Human-Computer Communications Society, Mississauga, Ontario, CA (2003)

  9. James, D.L., Pai, D.K.: Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21(3), 582–585 (2002)

    Article  Google Scholar 

  10. Kim, T., Delaney, J.: Subspace fluid re-simulation. ACM Trans. Graph. 32(4), 62:1–62:9 (2013)

    MATH  Google Scholar 

  11. Kim, T., James, D.L.: Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28(5), 123:1–123:9 (2009)

    Google Scholar 

  12. Kim, T., James, D.L.: Physics-based character skinning using multidomain subspace deformations. IEEE Trans. Vis. Comput. Graph. 18(8), 1228–1240 (2012)

    Article  Google Scholar 

  13. Li, S., Huang, J., de Goes, F., Jin, X., Bao, H., Desbrun, M.: Space-time editing of elastic motion through material optimization and reduction. ACM Trans. Graph. 33(4), 108:1–108:10 (2014)

    Article  Google Scholar 

  14. Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. SIGGRAPH Comput. Graph. 23(3), 207–214 (1989)

    Article  Google Scholar 

  15. Shabana, A.A.: Theory of Vibration: Volume II: Discrete and Continuous Systems. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  16. Sifakis, E., Barbič, J.: FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In: ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, pp. 20:1–20:50. ACM, New York, NY, USA (2012)

  17. Tang, M., Manocha, D., Otaduy, M.A., Tong, R.: Continuous penalty forces. ACM Trans. Graph. 31(4), 107:1–107:9 (2012)

    Article  Google Scholar 

  18. Teng, Y., Meyer, M., DeRose, T., Kim, T.: Subspace condensation: full space adaptivity for subspace deformations. ACM Trans. Graph. 34(4), 76:1–76:9 (2015)

  19. Treuille, A., Lewis, A., Popovič, Z.: Model reduction for real-time fluids. ACM Trans. Graph. 25(3), 826–834 (2006)

    Article  Google Scholar 

  20. von Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: An efficient construction of reduced deformable objects. ACM Trans. Graph. 32(6), 213:1–213:10 (2013)

    Google Scholar 

  21. von Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K.: Real-time nonlinear shape interpolation. ACM Trans. Graph. 34(3), 34:1–34:10 (2015)

    MATH  Google Scholar 

  22. Xu, H., Barbič, J.: Pose-space subspace dynamics. ACM Trans. Graph. 35(4), 35:1–35:14 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kanai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Kanai, T. Data-driven subspace enrichment for elastic deformations with collisions. Vis Comput 33, 779–788 (2017). https://doi.org/10.1007/s00371-017-1376-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1376-7

Keywords

Navigation