Skip to main content

Advertisement

Log in

Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The distribution and origin of shallow gas seeps in the vicinity of the Posolsky Bank in Lake Baikal were studied based on the integration of detailed seismic, multibeam, and hydro-acoustic water-column investigations. In all, 65 acoustic flares have been detected on the Posolsky Fault scarp near the crest of the bank and in a similar, nearby setting at water depths of −43 to −332 m. The seismic data reveal BSRs (bottom-simulating reflectors) occurring up to water depths of −300 m. Calculations involving hydrate stability, heat flow, and topographic modulation based on BSR occurrence and multibeam bathymetry enabled prediction of a methane–ethane gas mixture and heat-flow values that would account for gas hydrate stability in the lake sediments under prevailing ambient conditions. These predictions are supported by ground truth data. The findings suggest that seeps concentrated along the crest of the Posolsky Bank are fed mainly by gas coming from below the base of the gas hydrate stability zone, which would migrate updip via permeable stratigraphic pathways beneath the bank. Gas would ultimately be released into the water column where these pathways are cut off by faults.

Conceptual seep model for the Posolsky Bank, Lake Baikal

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Artemov YG, Egorov VN, Polikarpov GG, Gulin SB (2007) Methane emission to the hydro- and atmosphere by gas bubble streams in the Dnieper paleo-delta, the Black Sea. Mar Ecol J 6(3):5–26

    Google Scholar 

  • Balling N, Haenel R, Ungemach P, Vasseur G, Wheildon J (1981) Preliminary guidelines for heat flow density determination. In: Series Energy. Commission of the European Communities, Directorate-General Information and Innovation, Luxembourg

  • Bezrukova E, Bukharov A, Bychinsky V, Fedenya S, Gelety V, Goreglyad A, Gorokhov I, Gvozdkov A, Ivanov E, Kalmychkov G, Kawai T, Kerber E, Khakhaev B, Khomutova M, Khursevich G, Kochukov V, Krainov V, Kravchinsky V, Kudryashov N, Kulagina N, Kuzmin M, Letunova P, Levina O, Ochiai S, Pevzner L, Prokopenko A, Solotchin P, Tanaka A, Tkachenko L, Williams D, Yamaguchi J (2005) A new Quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quat Int 136:105–121

    Article  Google Scholar 

  • Bourry C, Chazallon B, Charlou JL, Donval JP, Ruffine L, Henry P, Geli L, Çagatay MN, İnan S, Moreau M (2009) Free gas and gas hydrates from the Sea of Marmara, Turkey: chemical and structural characterization. Chem Geol 264:197–206

    Article  Google Scholar 

  • Charlet F, Fagel N, De Batist M, Hauregard F, Minnebo B, Meischner D, Team S (2005) Sedimentary dynamics on isolated highs in Lake Baikal: evidence from detailed high-resolution geophysical data and sediment cores. Global Planet Change 46:125–144

    Article  Google Scholar 

  • Colman SM, Karabanov EB, Nelson CH (2003) Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring. J Sed Res 73:941–956

    Article  Google Scholar 

  • De Batist M, Klerkx J, Van Rensbergen P, Vanneste M, Poort J, Golmshtok AY, Kremlev AA, Khlystov OM, Krinitsky P (2002) Active hydrate destabilization in Lake Baikal, Siberia? Terra Nova 14:436–442

    Article  Google Scholar 

  • Galaziy GI (1993) Baikal atlas (in Russian). Federal Agency for Geodesy and Cartography, Moscow

    Google Scholar 

  • Golmshtok AY, Duchkov AD, Hutchinson DR, Khanukaev SB, Elnikov AI (1997) Estimations of heat flow on Baikal from seismic data on the lower boundary of the gas hydrate layer. Geol Geofiz 38:1677–1691

    Google Scholar 

  • Golmshtok AY, Duchkov AD, Hutchinson DR, Khanukaev SB (2000) Heat flow and gas hydrates of the Baikal Rift Zone. Int J Earth Sci 89:193–211

    Article  Google Scholar 

  • Golubev VA, Klerkx J, Kipfer R (1993) Heat-flow, hydrothermal vents and static stability of discharging thermal water in Lake Baikal (south-eastern Siberia). Bull Centres Rech Explor-Prod Elf Aquitaine 17:53–65

    Google Scholar 

  • Granin NG, Granina LZ (2002) Gas hydrates and gas venting in Lake Baikal. Russian Geol Geophys 43:589–597

    Google Scholar 

  • Granin NG, Makarov MM, Kucher KM, Gnatovsky RY (2010) Gas seeps in Lake Baikal—detection, distribution, and implications for water column mixing. Geo-Mar Lett 30(3/4):399–409. doi:10.1007/s00367-010-0201-3

    Article  Google Scholar 

  • Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244:1–15

    Article  Google Scholar 

  • Haacke RR, Westbrook GK, Hyndman RD (2007) Gas hydrate, fluid flow and free gas: formation of the bottom-simulating reflector. Earth Planet Sci Lett 261:407–420

    Article  Google Scholar 

  • Hachikubo A, Khlystov O, Manakov A, Kida M, Krylov A, Sakagami H, Minami H, Takahashi N, Shoji H, Kalmychkov G, Poort J (2009) Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophys Res Lett 36:L18504. doi:10.1029/2009GL039805

    Article  Google Scholar 

  • Hachikubo A, Khlystov O, Krylov A, Sakagami H, Minami H, Nunokawa Y, Yamashita S, Takahashi N, Shoji H, Sy N, Kida M, Ebinuma T, Kalmychkov G, Poort J (2010) Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Mar Lett 30(3/4):321–329. doi:10.1007/s00367-010-0203-1

    Article  Google Scholar 

  • Henriet JP, Mienert J (1998) Gas hydrates: relevance to world margin stability and climate change. The Geological Society, London

    Google Scholar 

  • Hutchinson DR, Golmshtok AY, Scholz CA, Moore TC, Lee MW, Kuz’min M (1991) Bottom simulating reflector in Lake Baikal. EOS Trans Am Geophys Union 307

  • INTAS Project 99–1669 Team (2002) A new bathymetric map of Lake Baikal. Renard Centre of Marine Geology (RCMG), Ghent University, open-file report, cd-rom

  • Judd AG (2003) The global importance and context of methane escape from the seabed. Geo-Mar Lett 23(3/4):147–154. doi:10.1007/s00367-003-0136-z

    Article  Google Scholar 

  • Judd A, Hovland M (2007) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kalmychkov G, Egorov A, Kuz’min M, Khlystov O (2006) Genetic types of methane from Lake Baikal. Dokl Earth Sci 411:1462–1465

    Article  Google Scholar 

  • Khlystov OM (2006) New findings of gas hydrates in the Baikal bottom sediments. Russian Geol Geophys 47:972–974

    Google Scholar 

  • Kida M, Khlystov O, Zemskaya T, Takahashi N, Minami H, Sakagami H, Krylov A, Hachikubo A, Yamashita S, Shoji H, Poort J, Naudts L (2006) Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophys Res Lett 33:L24603. doi:10.1029/2006GL028296

    Article  Google Scholar 

  • Klerkx J, Zemskaya TI, Matveeva TV, Khlystov OM, Namsaraev BB, Dagurova OP, Golobokova LP, Vorob’eva SS, Pogodaeva TP, Granin NG, Kalmychkov GV, Ponomarchuk VA, Shoji H, Mazurenko LL, Kaulio VV, Solov’ev VA, Grachev MA (2003) Methane hydrates in deep bottom sediments of Lake Baikal. Dokl Earth Sci 393A:1342–1346

    Google Scholar 

  • Klerkx J, De Batist M, Poort J, Hus R, Van Rensbergen P, Khlystov O, Granin N (2006) Tectonically controlled methane escape in Lake Baikal. In: Lombardi S, Altunina LK, Beaubien SE (eds) Advances in the geological storage of carbon dioxide. Springer, Dordrecht, pp 203–219

    Chapter  Google Scholar 

  • Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Nunokawa Y, Kida M, Shoji H, Naudts L, Poort J, Pogodaeva T (2008a) First discovery and formation process of authigenic siderite from gas hydrate-bearing mud volcanoes in fresh water: Lake Baikal, Eastern Siberia. Geophys Res Lett 35:L05405. doi:10.1029/2007GL032917

    Article  Google Scholar 

  • Krylov A, Khlystov O, Zemskaya T, Minami H, Hachikubo A, Shoji H, Kida M, Pogodaeva T, Naudts L, Poort J (2008b) Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal. Geochem Int 46:985–995

    Article  Google Scholar 

  • Kuzmin MI, Kalmychkov GV, Geletij VF, Gnilusha VA, Goreglyad AV, Khakhaev BN, Pevzner LA, Kavai T, Ioshida N, Duchkov AD, Ponomarchuk VA, Kontorovich AE, Bazhin NM, Mahov GA, Dyadin YA, Kuznetsov FA, Larionov EG, Manakov AY, Smolyakov BS, Mandelbaum MM, Zheleznyakov NK (1998) First find of gas hydrates in sediments of Lake Baikal (in Russian). Dokl Akad Nauk SSSR:541–543

  • Kuzmin MI, Geletiy VF, Kalmychkov G, Kuznetsov FA, Larionov EG, Manakov AY, Mironov YI, Smoljakov BS, Dyadin YA, Duchkov AD, Bazin NM, Mahov GM (2000) The first discovery of the gas hydrates in the sediments of the Lake Baikal. In: Gas hydrates: challenges for the future. Ann N Y Acad Sci 912:112–115

  • Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Mar Lett 23(3/4):289–299. doi:10.1007/s00367-003-0144-z

    Article  Google Scholar 

  • Naudts L, Greinert J, Artemov Y, Staelens P, Poort J, Van Rensbergen P, De Batist M (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar Geol 227:177–199

    Article  Google Scholar 

  • Naudts L, De Batist M, Greinert J, Artemov Y (2009) Geo- and hydro-acoustic manifestations of shallow gas and gas seeps in the Dnepr paleodelta, northwestern Black Sea. Leading Edge 28:1030–1040

    Article  Google Scholar 

  • Poort J, Klerkx J (2004) Absence of a regional surface thermal high in the Baikal rift; new insights from detailed contouring of heat flow anomalies. Tectonophysics 383:217–241

    Article  Google Scholar 

  • Poort J, Kutas RI, Klerkx J, Beaubien SE, Lombardi S, Dimitrov L, Vassilev A, Naudts L (2007) Strong heat flow variability in an active shallow gas environment, Dnepr palaeo-delta, Black Sea. Geo-Mar Lett 27(2/4):185–195. doi:10.1007/s00367-007-0072-4

    Article  Google Scholar 

  • Reeburgh WS, Tyler SC, Carroll J (2006) Stable carbon and hydrogen isotope measurements on Black Sea water-column methane. Deep-Sea Res II 53:1893–1900

    Article  Google Scholar 

  • Schmid M, De Batist M, Granin NG, Kapitanov VA, McGinnis DF, Mizandrontsev IB, Obzhirov AI, Wuust A (2007) Sources and sinks of methane in Lake Baikal: a synthesis of measurements and modeling. Limnol Oceanogr 52:1824–1837

    Article  Google Scholar 

  • Scholz CA, Hutchinson DR (2000) Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia. Int J Earth Sci 89:212–228

    Article  Google Scholar 

  • Sloan EDJ (1998) Clathrate hydrates of natural gases. Marcel Dekker, New York

    Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Tréhu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  Google Scholar 

  • Vanneste M, De Batist M, Golmshtok A, Kremlev A, Versteeg W (2001) Multi-frequency seismic study of gas hydrate-bearing sediments in Lake Baikal, Siberia. Mar Geol 172:1–21

    Article  Google Scholar 

  • Vanneste M, Poort J, De Batist M, Klerkx J (2002) Atypical heat-flow near gas hydrate irregularities and cold seeps in the Baikal Rift Zone. Mar Petrol Geol 19:1257–1274

    Article  Google Scholar 

  • Van Rensbergen P, De Batist M, Klerkx J, Hus R, Poort J, Vanneste M, Granin N, Khlystov O, Krinitsky P (2002) Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal. Geology 30:631–634

    Article  Google Scholar 

  • Westbrook GK, Thatcher KE, Rohling EJ, Piotrowski AM, Pallike H, Osborne AH, Nisbet EG, Minshull TA, Lanoiselle M, James RH, Hohnerbach V, Green D, Fisher RE, Crocker AJ, Chabert A, Bolton C, Beszczynska-Moller A, Berndt C, Aquilina A (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys Res Lett 36:L15608. doi:10.1029/2009GL039191

    Article  Google Scholar 

  • Williams DF, Kuzmin MI, Prokopenko AA, Karabanov EB, Khursevich GK, Bezrukova EV (2001) The Lake Baikal drilling project in the context of a global lake drilling initiative. Quat Int 80(81):3–18

    Article  Google Scholar 

Download references

Acknowledgments

We thank the captains and crews of RV Vereshchagin and RV Titov for their craftsmanship, and all scientists and students involved in this research on Lake Baikal. This work was supported by the Federal Office for Scientific, Technical and Cultural Affairs (OSTC project BL/02/R11 phase 2, and IN/RU/005) and the INTAS-2001-2309 project. The multibeam mapping survey was conducted within the framework of RAS (Russian Academy of Sciences) Presidium Program no. 21.8 and FWO (Fonds Wetenschappelijk Onderzoek) Flanders project 1.5.198.09. Thanks go to Boris Schulze (L-3 ELAC Nautik GmbH), Jens Greinert, Jeroen Vercruysse, and Wim Versteeg for preparatory survey assistance, Joerg Bialas and Wili Weinrebe (IFM-GEOMAR) for use of the OCTANS motion sensor, Andrey Habuev, Igor Seminsky, Robbert Casier, Myriam Cuylaerts, Joris Synaeve, Nele Vlamynck, Pavel Generalchenko, Oleg Belousov, Ruslan Gnatovsky, Mikhail Makarov, and Konstantin Kucher for help during the expedition, and Francis Lucazeau for kindly providing his code version for topographic corrections on heat-flow data. Also thanked are IVS 3D (Fledermaus) and SMT (Kingdom Suite) for providing us with academic software licenses. The manuscript benefited from constructive assessments by S. Buenz and D. Orange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Naudts.

Additional information

Responsible guest editors: M. De Batist and O. Khlystov

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Fig. 1 3D perspective views of Lake Baikal and Posolsky Bank, indicating the most prominent features (illumination from NW). The view directions (a and b) are indicated on Fig. 1 of the main article. The images are constructed by compiling SRTM–derived topography data with bathymetry data from Lake Baikal (INTAS Project 99–1669 Team 2002) and multibeam bathymetry data. (PDF 2021 kb)

Online Resource 2

Fig. 2 Photographs of gas bubbles trapped underneath and within the frozen lake surface above seep sites at Posolsky Bank (pictures courtesy of N. Granin). The lower–right picture shows gas bubbles reaching the lake surface at a seep site close to the Selenga River delta (photograph courtesy of V. Kapitanov). (PDF 1020 kb)

Online Resource 3

Fig. 3 3D perspective view of multibeam bathymetry overlain with bathymetric contours and with flare locations plotted as red dots or shown on an echogram in combination with three sparker profiles (illumination from NE). The top of the gas–bearing layer (TGBL) is shown as depth color–coded surface. This surface starts from or above the flare positions at the scarp of the Posolsky Bank and can be traced down the Posolsky Bank to below the BSR or BGHSZ. (PDF 818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naudts, L., Khlystov, O., Granin, N. et al. Stratigraphic and structural control on the distribution of gas hydrates and active gas seeps on the Posolsky Bank, Lake Baikal. Geo-Mar Lett 32, 395–406 (2012). https://doi.org/10.1007/s00367-012-0286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-012-0286-y

Keywords

Navigation