Skip to main content
Log in

Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of viscoelastic piezoelectric nanoelectromechanical resonators

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The present study mainly investigates the effect of the residual surface stress and the applied electric voltage on the nonlinear dynamic instability of the viscoelastic piezoelectric nanoresonators under parametric excitation. In fact, great attention is given to the influence of the residual surface stress on the nonlinear instability of the system. Numerical examples are treated which show various bifurcations. By means of a bifurcation analysis, it is shown that the instability of the system can be significantly affected by considering the residual surface effect. The results also show that a discontinuous bifurcation is always accompanied by a jump. Finally, stable and unstable regions in dynamic instability of viscoelastic piezoelectric nanoplates are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(E\) :

Young’s modulus

\(\sigma^{\prime}\) :

The classical stress tensor

\(\sigma_{xx} , \sigma_{yy} , \sigma_{xy}\) :

Normal stress components

\(\varepsilon_{xx} , \varepsilon_{yy} , \varepsilon_{xy}\) :

Strain vector

\(\sigma_{ij,j}\) :

Stress

\(f\) :

Body forces

\(\Phi\) :

Electric potential

\(E_{z}\) :

Electric field

\(\sigma\) :

Detuning parameter

\(e_{0} a\) :

Nonlocal parameter

\(\beta\) :

Nonlinearity coefficient

\(\eta\) :

Phase angle

\(F\) :

Force amplitude

\(N_{\rm AB}^{*}\) :

Total resultant forces

\(M_{\rm AB}^{*}\) :

Total resultant moments

\(D_{11} , D_{12} ,D_{22} , D_{66}\) :

Bending stiffness

\(t\) :

Time

\(\rho\) :

Mass density

\(\omega_{0}\) :

Natural frequency

\(u_{1} , u_{2}\) :

In-plane displacements

\(u_{3}\) :

Transverse displacement

\(u_{0} , v_{0} , w_{0}\) :

Middle surface displacements

\(N_{AB}\) :

Resultant forces

\(M_{AB}\) :

Resultant moments

\(D_{{\Lambda }}^{s}\) :

Plane electric movements

\(D_{{\Lambda }}^{0}\) :

Residual plane electric movement

\(l\) :

Length of the nanoplate

\(b\) :

Width of the nanoplate

\(h\) :

Thickness of the nanoplate

\(\tau_{0}\) :

Residual surface stress

\(e_{31}^{s}\) :

Surface piezoelectric constant

\(q_{z}\) :

Lateral load

\(Q_{A} , Q_{B}\) :

Shear forces

\(c_{11} , c_{12} , c_{22} , c_{66}\) :

Bulk elastic constants

\(c_{11}^{s} , c_{12}^{s} , c_{66}^{s}\) :

Surface elastic constants

\(T_{0} , T_{1}\) :

Time scales

\(c_{d}\) :

Viscous damping coefficient

\(\delta\) :

Parametric excitation amplitude

\(I_{0} , I_{2}\) :

The moment of inertia

\(e_{31}\) :

Bulk piezoelectric constant

\(k_{33}\) :

Dielectric constants

\(k_{w}\) :

Winkler foundation coefficient

\(k_{G}\) :

Pasternak foundation coefficient

\(f\) :

Transverse load

\({\Omega }\) :

Frequency excitation

\(\in\) :

Scaling parameter

\(w\) :

Nanoplate deflection

\(\mu\) :

Damping coefficient

\(\sigma_{\rm AB}^{s}\) :

Surface stresses

\(\sigma_{\rm AB}^{0}\) :

Residual surface stresses without applied strain

\(\psi\) :

Time-dependent function

References

  1. Costello BJ, Wenzel SW, White RM, Ward MD, Buttry DA (1991) Acoustic chemical sensors. Science 251(4999):1372–1373

    Google Scholar 

  2. Lang HP, Hegner M, Meyer E, Gerber C (2002) Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13(5):R29

    Google Scholar 

  3. Lavrik NV, Datskos PG (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett 82(16):2697–2699

    Google Scholar 

  4. Ekinci KL, Huang XMH, Roukes ML (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84(22):4469–4471

    Google Scholar 

  5. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253

    Google Scholar 

  6. Lao CS, Kuang Q, Wang ZL, Park MC, Deng Y (2007) Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl Phys Lett 90(26):262107

    Google Scholar 

  7. Su WS, Chen YF, Hsiao CL, Tu LW (2007) Generation of electricity in GaN nanorods induced by piezoelectric effect. Appl Phys Lett 90(6):063110

    Google Scholar 

  8. Tanner SM, Gray JM, Rogers CT, Bertness KA, Sanford NA (2007) High-Q GaN nanowire resonators and oscillators. Appl Phys Lett 91(20):203117

    Google Scholar 

  9. Fei P, Yeh PH, Zhou J, Xu S, Gao Y, Song J, Wang ZL (2009) Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett 9(10):3435–3439

    Google Scholar 

  10. Daulton TL, Bondi KS, Kelton KF (2010) Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials—application to Al88− xY7Fe5Tix metallic glasses. Ultramicroscopy 110(10):1279–1289

    Google Scholar 

  11. Park KI, Xu S, Liu Y, Hwang GT, Kang SJL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10(12):4939–4943

    Google Scholar 

  12. Qi Y, Kim J, Nguyen TD, Lisko B, Purohit PK, McAlpine MC (2011) Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett 11(3):1331–1336

    Google Scholar 

  13. Feng X, Yang BD, Liu Y, Wang Y, Dagdeviren C, Liu Z, Rogers JA (2011) Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5(4):3326–3332

    Google Scholar 

  14. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    MathSciNet  MATH  Google Scholar 

  15. Eringen AC (1983) Theories of nonlocal plasticity. Int J Eng Sci 21(7):741–751

    MathSciNet  MATH  Google Scholar 

  16. Ghadiri M, Shafiei N, Akbarshahi A (2016) Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl Phys A 122(7):673

    Google Scholar 

  17. Rahmanian S, Ghazavi MR, Hosseini-Hashemi S (2019) On the numerical investigation of size and surface effects on nonlinear dynamics of a nanoresonator under electrostatic actuation. J Braz Soc Mech Sci Eng 41(1):16

    Google Scholar 

  18. Zhang YQ, Liu GR, Wang JS (2004) Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 70(20):205430

    Google Scholar 

  19. Ebrahimi F, Hosseini SHS, Bayrami SS (2019) Nonlinear forced vibration of pre-stressed graphene sheets subjected to a mechanical shock: An analytical study. Thin-Walled Struct 141:293–307

    Google Scholar 

  20. Ghadiri M, Hosseini SHS (2019) Parametric excitation of Euler-Bernoulli nanobeams under thermo-magneto-mechanical loads: nonlinear vibration and dynamic instability. Compos Part B Eng 173:106928

    Google Scholar 

  21. Ehyaei J, Akbarshahi A, Shafiei N (2017) Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam. Adv Nano Res 5(2):141–169

    Google Scholar 

  22. Ebrahimi F, Hosseini SHS (2016) Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stresses 39(5):606–625

    Google Scholar 

  23. Barretta R, Feo L, Luciano R, de Sciarra FM (2015) Variational formulations for functionally graded nonlocal Bernoulli–Euler nanobeams. Compos Struct 129:80–89

    Google Scholar 

  24. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35(4):1297–1316

    Google Scholar 

  25. Karami B, Janghorban M, Tounsi A (2018) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27(2):201–216

    Google Scholar 

  26. Karami B, Janghorban M, Shahsavari D, Tounsi A (2018) A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel Compos Struct 28(1):99–110

    Google Scholar 

  27. Karami et al (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25(3):361–374

    Google Scholar 

  28. Attia A, Bousahla AA, Tounsi A, Mahmoud SR, Alwabli AS (2018) A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations. Struct Eng Mech 65(4):453–464

    Google Scholar 

  29. Kadari B, Bessaim A, Tounsi A, Heireche H, Bousahla AA, Houari MSA (2018) Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. J Nano Res 55:42–56. (Trans Tech Publications).

  30. Beldjelili Y, Tounsi A, Mahmoud SR (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18(4):755–786

    Google Scholar 

  31. Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20(2):227–249

    Google Scholar 

  32. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos B Eng 159:231–247

    Google Scholar 

  33. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    MathSciNet  MATH  Google Scholar 

  34. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    MATH  Google Scholar 

  35. Wang KF, Wang BL (2012) Effects of residual surface stress and surface elasticity on the nonlinear free vibration of nanoscale plates. J Appl Phys 112(1):013520

    Google Scholar 

  36. Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43(16):4631–4647

    MATH  Google Scholar 

  37. Hosseini-Hashemi S, Fakher M, Nazemnezhad R (2013) Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler–Bernoulli and Timoshenko. J Solid Mech 5(3):290–304

    Google Scholar 

  38. Amiri A, Vesal R, Talebitooti R (2019) Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model. Int J Mech Sci 156:474–485

    Google Scholar 

  39. Arefi M, Pourjamshidian M, Ghorbanpour Arani A, Rabczuk T (2019) Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nano-beams. J Low Freq Noise Vib Active Control 38(1):122–142

    Google Scholar 

  40. Ke LL, Wang YS, Wang ZD (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct 94(6):2038–2047

    Google Scholar 

  41. Ebrahimi F, Barati MR (2018) Vibration analysis of size-dependent flexoelectric nanoplates incorporating surface and thermal effects. Mech Adv Mater Struct 25(7):611–621

    Google Scholar 

  42. Ebrahimi F, Barati MR (2019) Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects. Microsyst Technol 25(1):175–187

    Google Scholar 

  43. Ebrahimi F, Heidari E (2019) Surface effects on nonlinear vibration of embedded functionally graded nanoplates via higher order shear deformation plate theory. Mech Adv Mater Struct 26(8):671–699

    Google Scholar 

  44. Ebrahimi F, Hosseini SHS (2017) Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates. Eur Phys J Plus 132(4):172

    Google Scholar 

  45. Liu S, Yu T, Van Lich L, Yin S, Bui TQ (2019) Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct 212:173–187

    Google Scholar 

  46. Basutkar R, Sidhardh S, Ray MC (2019) Static analysis of flexoelectric nanobeams incorporating surface effects using element free Galerkin method. Eur J Mech A/Solids 76:13–24

    MathSciNet  MATH  Google Scholar 

  47. Ghorbani K, Mohammadi K, Rajabpour A, Ghadiri M (2019) Surface and size-dependent effects on the free vibration analysis of cylindrical shell based on Gurtin–Murdoch and nonlocal strain gradient theories. J Phys Chem Solids 129:140–150

    Google Scholar 

  48. Kachapi SHH, Dardel M, Daniali HM, Fathi A (2019) Pull-in instability and nonlinear vibration analysis of electrostatically piezoelectric nanoresonator with surface/interface effects. Thin-Walled Struct 143:106210

    Google Scholar 

  49. Kachapi SHH, Dardel M, Daniali HM, Fathi A (2019) Effects of surface energy on vibration characteristics of double-walled piezo-viscoelastic cylindrical nanoshell. Proc Inst Mech Eng Part C J Mech Eng Sci 0954406219845019.

  50. Yang Y, Zou J, Lee KY, Li XF (2018) Bending of circular nanoplates with consideration of surface effects. Meccanica 53(4–5):985–999

    MathSciNet  MATH  Google Scholar 

  51. Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21(1):65–74

    Google Scholar 

  52. Mokhtar Y, Heireche H, Bousahla AA, Houari MSA, Tounsi A, Mahmoud SR (2018) A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory. Smart Struct Syst 21(4):397–405

    Google Scholar 

  53. Huang Y, Fu J, Liu A (2019) Dynamic instability of Euler–Bernoulli nanobeams subject to parametric excitation. Compos B Eng 164:226–234

    Google Scholar 

  54. Wang YZ, Wang YS, Ke LL (2016) Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory. Phys E 83:195–200

    Google Scholar 

  55. Jalaei MH, Thai HT (2019) Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos Part B Eng 175:107164

    Google Scholar 

  56. Jalaei MH, Civalek Ö (2019) A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects. Compos Struct 220:209–220

    Google Scholar 

  57. Barati MR, Zenkour A (2018) Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates. Iran J Sci Technol Trans Mech Eng 43:1–12

    Google Scholar 

  58. Hossein Jalaei M, Dimitri R, Tornabene F (2019) Dynamic stability of temperature-dependent graphene sheet embedded in an elastomeric medium. Appl Sci 9(5):887

    Google Scholar 

  59. Jalaei MH, Civalek Ö (2019) On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci 143:14–32

    MathSciNet  MATH  Google Scholar 

  60. Bakhadda B, Bouiadjra MB, Bourada F, Bousahla AA, Tounsi A, Mahmoud SR (2018) Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind Struct 27(5):311–324

    Google Scholar 

  61. Boukhlif Z, Bouremana M, Bourada F, Bousahla AA, Bourada M, Tounsi A, Al-Osta MA (2019) A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos Struct 31(5):503–516

    Google Scholar 

  62. Boulefrakh L, Hebali H, Chikh A, Bousahla AA, Tounsi A, Mahmoud SR (2019) The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng 18(2):161–178

    Google Scholar 

  63. Semmah A, Heireche H, Bousahla AA, Tounsi A (2019) Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv Nano Res 7(2):89

    Google Scholar 

  64. Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud SR (2017) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62(6):695–702

    Google Scholar 

  65. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct 129:251–264

    Google Scholar 

  66. Karami B, Janghorban M, Tounsi A (2019) On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model. Struct Eng Mech 69(5):487–497

    Google Scholar 

  67. Wang YZ (2017) Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory. Appl Math Model 48:621–634

    MathSciNet  MATH  Google Scholar 

  68. Krylov S, Harari I, Cohen Y (2005) Stabilization of electrostatically actuated microstructures using parametric excitation. J Micromech Microeng 15(6):1188

    Google Scholar 

  69. Azrar A, Said MB, Azrar L, Aljinaidi AA (2019) Dynamic instability analysis of magneto-electro-elastic beams with uncertain parameters under static and parametric electric and magnetic fields. Compos Struct. https://doi.org/10.1016/j.compstruct.2019.111185

    Article  Google Scholar 

  70. Zemri A, Houari MSA, Bousahla AA, Tounsi A (2015) A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech 54(4):693–710

    Google Scholar 

  71. Khetir H, Bouiadjra MB, Houari MSA, Tounsi A, Mahmoud SR (2017) A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct Eng Mech 64(4):391–402

    Google Scholar 

  72. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A, Mahmoud SR (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7(3):191

    Google Scholar 

  73. Hamza-Cherif R, Meradjah M, Zidour M, Tounsi A, Belmahi S, Bensattalah T (2018) Vibration analysis of nano beam using differential transform method including thermal effect. J Nano Res 54: 1–14 (Trans Tech Publications).

  74. Bouadi A, Bousahla AA, Houari MSA, Heireche H, Tounsi A (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6(2):147–162

    Google Scholar 

  75. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud SR (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput 1–15

  76. Gao Y, Wang ZL (2007) Electrostatic potential in a bent piezoelectric nanowire: the fundamental theory of nanogenerator and nanopiezotronics. Nano Lett 7(8):2499–2505

    Google Scholar 

  77. Wang GF, Feng XQ (2010) Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. EPL (Europhys Lett) 91(5):56007

    Google Scholar 

  78. Zhao M, Qian C, Lee SWR, Tong P, Suemasu H, Zhang TY (2007) Electro-elastic analysis of piezoelectric laminated plates. Adv Compos Mater 16(1):63–81

    Google Scholar 

  79. Huang GY, Yu SW (2006) Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys Status Solidi B 243(4):22–24

    Google Scholar 

  80. Yan Z, Jiang L (2011) Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J Phys D Appl Phys 44(7):075404

    Google Scholar 

  81. Yan Z, Jiang LY (2011) The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24):245703

    Google Scholar 

  82. Wang GF, Feng XQ (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90(23):231904

    Google Scholar 

  83. Wang GF, Feng XQ (2009) Timoshenko beam model for buckling and vibration of nanowires with surface effects. J Phys D Appl Phys 42(15):155411

    Google Scholar 

  84. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802

    Google Scholar 

  85. He J, Lilley CM (2008) Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl Phys Lett 93(26):263108

    Google Scholar 

  86. Chen T, Chiu MS, Weng CN (2006) Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J Appl Phys 100(7):074308

    Google Scholar 

  87. Reddy JN (2013) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  88. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC Press, Boca Raton

    Google Scholar 

  89. Nayfeh AH, Mook DT (2008) Nonlinear oscillations. Wiley, Hoboken

    MATH  Google Scholar 

  90. Ke LL, Wang YS (2012) Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct 21(2):025018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Ebrahimi or Ali Toghroli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariati, A., Hosseini, S.H.S., Bayrami, S.S. et al. Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of viscoelastic piezoelectric nanoelectromechanical resonators. Engineering with Computers 37, 1835–1850 (2021). https://doi.org/10.1007/s00366-019-00916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00916-9

Keywords

Navigation