Skip to main content
Log in

Diversity enhanced and local search accelerated gravitational search algorithm for data fitting with B-splines

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Gravitational search algorithm (GSA) has shown an effective performance for solving real-world optimization problems. However, it suffers from premature convergence because of quick losing of diversity. To enhance its performance, this paper proposes a novel GSA algorithm, called GSA–PWL (piecewise linear)–SQP (sequential quadratic programming), which employs a diversity enhancing mechanism and an accelerated local search strategy to achieve a trade-off between exploration and exploitation abilities. A comprehensive experimental study is conducted on a set of benchmark functions. Comparison results show that GSA–PWL–SQP obtains a promising performance on the majority of the test problems. Furthermore, the GSA–PWL–SQP is applied to data fitting with B-splines to solve very difficult continuous multimodal and multivariate nonlinear optimization problem. The method of data fitting based on GSA–PWL–SQP yields very accurate results even for curves with singularities and/or cusps and is very efficient in terms of data points error, AIC and BIC criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26:327–333

    Article  Google Scholar 

  2. Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13:1433–1439

    Article  Google Scholar 

  3. Yildiz AR (2008) Hybrid Taguchi-harmony search algorithm for solving engineering optimization problems. Int J Ind EngTheory Appl Pract 15:286–293

    Google Scholar 

  4. Yildiz AR (2009) A new design optimization framework based on immune algorithm and Taguchi method. Comput Ind 60:613–620

    Article  Google Scholar 

  5. Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59:367–376

    Article  Google Scholar 

  6. Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci 220:399–407

    Article  MathSciNet  Google Scholar 

  7. Ahari H, Khajepour A, Bedi S, Melek WW (2011) A genetic algorithm for optimization of laminated dies manufacturing. Comput Aided Des 43:730–737

    Article  Google Scholar 

  8. Yoshimoto F, Harada T, Yoshimoto Y (2003) Data fitting with a spline using a real-coded genetic algorithm. Comput Aided Des 35:751–760

    Article  Google Scholar 

  9. Pal P, Tigga AM, Kumar A (2005) Feature extraction from large CAD databases using genetic algorithm. Comput Aided Des 37:545–558

    Article  Google Scholar 

  10. Renner G, Ekárt A (2003) Genetic algorithms in computer aided design. Comput Aided Des 35:709–726

    Article  Google Scholar 

  11. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  12. Rashedi E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24:117–122

    Article  Google Scholar 

  13. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9:727–745

    Article  MATH  MathSciNet  Google Scholar 

  14. Sarafrazi S, Nezamabadi-pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Scientia Iranica 18:539–548

    Article  Google Scholar 

  15. Li C, Zhou J (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52:374–381

    Article  Google Scholar 

  16. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Int J Electr Power Energy Syst 35:21–33

    Article  Google Scholar 

  17. Yin M, Hu Y, Yang F, Li X, Gu W (2011) A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Syst Appl 38:9319–9324

    Article  Google Scholar 

  18. Khajehzadeh M, Raihan Taha M, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell 25:1589–1597

    Article  Google Scholar 

  19. Han XH, Chang XM (2012) A chaotic digital secure communication based on a modified gravitational search algorithm filter. Inf Sci 208:14–27

    Article  Google Scholar 

  20. Mirjalili SA, Mohd Hashim SZ, Sardroudi HM (2012) Training feed forward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137

    Article  MATH  MathSciNet  Google Scholar 

  21. Ghasemi A, Shayeghi H, Alkhatib H (2013) Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm. Int J Electr Power Energy Syst 51:190–200

    Article  Google Scholar 

  22. Vijaya Kumar J, Vinod Kumar DM, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13:2445–2455

    Google Scholar 

  23. Mendel E, Krohling RA, Campos M (2011) Swarm algorithms with chaotic jumps applied to noisy optimization problems. Inf Sci 181:4494–4514

    Article  MATH  MathSciNet  Google Scholar 

  24. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177:5033–5049

    Article  MATH  MathSciNet  Google Scholar 

  25. Wilson RB (1963) A simplicial algorithm for concave programming. PhD thesis, Harvard University, Cambridge

  26. Fletcher R (1987) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  27. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

    Article  Google Scholar 

  28. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064

    Article  Google Scholar 

  29. Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  30. Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inf Sci 176:937–971

    Article  MATH  Google Scholar 

  31. Barnhill RE (1992) Geometric processing for design and manufacturing. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  32. Patrikalakis NM, Maekawa T (2002) Shape interrogation for computer aided design and manufacturing. Springer, Heidelberg

    MATH  Google Scholar 

  33. Pottmann H, Leopoldseder S, Hofer M, Steiner T, Wang W (2005) Industrial geometry: recent advances and applications in CAD. Comput Aided Des 37:751–766

    Article  Google Scholar 

  34. Varady T, Martin RR, Cox J (1997) Reverse engineering of geometric models—an introduction. Comput Aided Des 29(4):255–268

    Article  Google Scholar 

  35. Hoschek J, Lasser D (1993) Fundamentals of computer aided geometric design. AK Peters, Wellesley

    MATH  Google Scholar 

  36. Jupp DLB (1978) Approximation to data by splines with free knots. SIAM J Numer Anal 15:328–343

    Article  MATH  MathSciNet  Google Scholar 

  37. Molinari N, Durand JF, Sabatier R (2004) Bounded optimal knots for regression splines. Comput Stat Data Anal 45(2):159–178

    Article  MATH  MathSciNet  Google Scholar 

  38. Sarfraz M, Raza SA (2001) Capturing outline of fonts using genetic algorithms and splines. In: Proceedings of fifth international conference on information visualization IV’2001. IEEE Computer Society Press, New York, pp 738–743

  39. Ulker E, Arslan A (2009) Automatic knot adjustment using an artificial immune system for B-spline curve approximation. Inf Sci 179:1483–1494

    Article  Google Scholar 

  40. Yoshimoto F, Moriyama M, Harada T (1999) Automatic knot placement by a genetic algorithm for data fitting with a spline. In: Proceedings of shape modeling international’99. IEEE Computer Society Press, New York, pp 162–169

  41. Zhao X, Zhang C, Yang B, Li P (2011) Adaptive knot placement using a GMM based continuous optimization algorithm in B-spline curve approximation. Comput Aided Des 43:598–604

    Article  Google Scholar 

  42. Gálvez A, Iglesias A (2011) Efficient particle swarm optimization approach for data fitting with free knot B-splines. Comput Aided Des 43:1683–1692

    Article  Google Scholar 

  43. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  MATH  MathSciNet  Google Scholar 

  44. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research has been supported by National Natural Science Foundation program of China (51035007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHong Han.

Appendix A

Appendix A

See Tables 9, 10 and 11.

Table 9 Unimodal test functions and their optimum values
Table 10 Multimodal test functions and their optimum values
Table 11 Multimodal test functions with fix dimension and their optimum values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Quan, L., Xiong, X. et al. Diversity enhanced and local search accelerated gravitational search algorithm for data fitting with B-splines. Engineering with Computers 31, 215–236 (2015). https://doi.org/10.1007/s00366-013-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-013-0343-9

Keywords

Navigation