Skip to main content
Log in

Chebyshev–Schoenberg Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

We show that a given space of splines with sections in a given Extended Chebyshev space gives birth to infinitely many positive linear operators of Schoenberg-type. As a consequence of the properties of Chebyshevian B-spline bases such operators are automatically variation-diminishing. Among other results, we show that the set of two-dimensional spaces they reproduce is stable under knot insertion and dimension elevation, and we establish a simple sufficient condition for convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M., Kounchev, O., Render, H.: Bernstein operators for exponential polynomials. Constr. Approx. 20, 345–367 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aldaz, J.M., Kounchev, O., Render, H.: Shape preserving properties of generalized Bernstein operators on extended Chebyshev spaces. Numer. Math. 114, 1–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barry, P.J.: de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves. Constr. Approx. 12, 385–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beutel, L., Gonska, H., Kacsó, D., Tachev, G.: On variation-diminishing Schoenberg operators: new quantitative statements. Monogr. Acad. Ciencias Zaragoza 20, 9–58 (2002)

    Google Scholar 

  5. Bister, D., Prautzsch, H.: A new approach to Tchebycheffian B-Splines. In: Curves and Surfaces with Applications in CAGD, pp. 35–41. Vanderbilt University Press (1997)

    Google Scholar 

  6. Carnicer, J.-M., Peña, J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and Its Applications, pp. 133–155. Kluwer, Amsterdam (1996)

    Google Scholar 

  7. DeVore, R.A.: The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics. Springer, Berlin (1972)

    Google Scholar 

  8. Goodman, T.N.: Total positivity and the shape of curves. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 157–186. Kluwer, Amsterdam (1996)

    Google Scholar 

  9. Goodman, T.N.T., Lee, S.L.: Spline approximation operators of Bernstein–Schoenberg type in one and two variables. J. Approx. Theory 33, 248–263 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, T.N.T., Lee, S.L., Sharma, A.: Asymptotic formula for the Bernstein–Schoenberg operator. Approx. Theory Appl. 4, 67–86 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Karlin, S.J., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley, New York (1966)

    MATH  Google Scholar 

  12. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan (1960)

    Google Scholar 

  13. Leviatan, D.: On the representation of the remainder in the variation-diminishing spline approximation. J. Approx. Theory 7, 63–70 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lane, J.M., Riesenfeld, R.F.: A geometric proof of the variation diminishing property of B-spline approximation. J. Approx. Theory 37, 1–4 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyche, T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marsden, M.J.: An identity for spline functions with applications to variation-diminishing spline approximation. J. Approx. Theory 3, 7–49 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsden, M.J.: On uniform spline approximation. J. Approx. Theory 6, 249–253 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marsden, M.J.: A Voronovskaya theorem for variation-diminishing spline approximation. Can. J. Math. 38, 1081–1093 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marsden, M.J., Schoenberg, I.J.: On variation-diminishing spline approximation methods. Mathematica 31, 61–82 (1966)

    MathSciNet  Google Scholar 

  20. Marsden, M.J., Riemenschneider, S.D.: Asymptotic formulae for variation-diminishing splines. In: Ditzian, Z., et al. (ed.) Second Edmonton Conference on Approximation Theory, pp. 255–261. Am. Math. Soc., Providence (1983)

    Google Scholar 

  21. Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazure, M.-L.: Blossoms and optimal bases. Adv. Comput. Math. 20, 177–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazure, M.-L.: On the equivalence between existence of B-spline bases and existence of blossoms. Constr. Approx. 20, 603–624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mazure, M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazure, M.-L.: Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazure, M.-L.: Understanding recurrence relations for Chebyshevian B-splines via blossoms. J. Comput. Appl. Math. 219, 457–470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mazure, M.-L.: Ready-to-blossom bases and the existence of geometrically continuous piecewise Chebyshevian B-splines. CRAS 347, 829–834 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Mazure, M.-L.: Bernstein-type operators in Chebyshev spaces. Numer. Algorithms 52, 93–128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazure, M.-L.: Dimension elevation for Chebyshevian splines. Numer. Algorithms, to appear (published online)

  30. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pottmann, H.: A geometric approach to variation diminshing free-form curve schemes. In: Peña, J.M. (ed.) Shape Preserving Representations in Computer-Aided Geometric Design, pp. 119–131. Nova (1999)

    Google Scholar 

  32. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schoenberg, I.J.: On variation diminishing approximation methods. In: Langer, R.E. (ed.) On Numerical Approximation. MRC Symposium, pp. 249–274. Univ. of Wisconsin Press, Madison (1959)

    Google Scholar 

  34. Schoenberg, I.J.: On spline functions. In: Shisha, O. (ed.) Inequalities: Proc. Symposium Wright Patterson Air Force Base, August 1965, pp. 255–291. Academic Press, New York (1967)

    Google Scholar 

  35. Schumaker, L.L.: Spline Functions. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Additional information

Communicated by Tim N.T. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. Chebyshev–Schoenberg Operators. Constr Approx 34, 181–208 (2011). https://doi.org/10.1007/s00365-010-9123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9123-6

Keywords

Mathematics Subject Classification

Navigation