Skip to main content
Log in

Pointwise Comparison of PCM and Σ Δ Quantization

  • Published:
Constructive Approximation Aims and scope

Abstract

A quantitative comparison of Pulse Code Modulation (PCM) and Sigma–Delta (Σ Δ) quantization methods is made in the setting of finite frames. Frames allow for redundant, overcomplete signal decompositions. PCM and Σ Δ are two industry-standard quantization methods, and the setting of finite frames is appropriate for a host of modern applications. Previous results for this comparison are known for upper error bounds, where Σ Δ performs better in the setting of frames, as opposed to orthonormal bases, where PCM is optimal. We answer the following question: For which signals x is the PCM error, that is, the norm of the difference between x and its PCM approximant, less than the Σ Δ error? We prove that, typically, in the setting of frames, Σ Δ outperforms PCM, but not always.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, P.M., Sorensen, H.V., Van Der Spiegel, J.: An overview of Sigma–Delta converters. IEEE Signal Process. Mag. 13, 61–84 (1996)

    Article  Google Scholar 

  2. Benedetto, J.J., Frazier, M.W. (eds.): Wavelets: Mathematics and Applications. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  3. Benedetto, J.J., Powell, A., Yılmaz, Ö.: Second order Sigma–Delta (Σ Δ) quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20, 126–148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Sigma–Delta quantization and finite frames. IEEE Trans. Inf. Theory 52, 1990–2005 (2006)

    Article  Google Scholar 

  5. Benedetto, J.J., Oktay, O., Tangboondouangjit, A.: Complex Sigma–Delta quantization algorithms for finite frames. Contemp. Math. 464, 27–51 (2008)

    MathSciNet  Google Scholar 

  6. Beurling, A., Malliavin, P.: On the closure of characters and the zeros of entire functions. Acta Math. 118, 79–93 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bodmann, B., Paulsen, V.: Frame paths and error bounds for Sigma–Delta quantization. Appl. Comput. Harmon. Anal. 22, 176–197 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candy, J.C., Temes, G.C. (eds.): Oversampling Delta–Sigma Data Converters. IEEE Press, New York (1992)

    Google Scholar 

  9. Casazza, P., Han, D., Larson, D.R.: Frames for Banach spaces. Contemp. Math. 247, 149–182 (1999)

    MathSciNet  Google Scholar 

  10. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  11. Cvetković, Z.: Resilience properties of redundant expansions under additive noise and quantization. IEEE Trans. Inf. Theory 49, 644–656 (2003)

    Article  MATH  Google Scholar 

  12. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  13. Daubechies, I., DeVore, R.: Reconstructing a bandlimited function from very coarsely quantized data: a family of stable Sigma–Delta modulators of arbitrary order. Ann. Math. 158, 679–710 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Daubechies, I., Yılmaz, Ö.: Robust and practical analog-to-digital conversion with exponential precision. IEEE Trans. Inf. Theory 52(8), 3533–3545 (2006)

    Article  Google Scholar 

  15. Daubechies, I., Grossman, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  18. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic/Springer, New York (1992)

    MATH  Google Scholar 

  19. Goyal, V.K.: Theoretical foundations of transform coding. IEEE Signal Process. Mag. 18, 9–21 (2001)

    Article  Google Scholar 

  20. Goyal, V.K., Kovačević, J., Vetterli, M.: Multiple description transform coding: robustness to erasures using tight frame expansions. In: Proc. Int. Symp. Inform. Theory (ISIT), Cambridge, MA, August 1998, p. 408

  21. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in ℝn: analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goyal, V.K., Kovačević, J., Vetterli, M.: Quantized frame expansions as source-channel codes for erasure channels. In: Proc. IEEE Data Compression Conference, Snowbird, UT, March 1999, pp. 326–335

  23. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goyal, V.K., Kovačević, J., Dragotti, P.: Filter bank frame expansions with erasures. IEEE Trans. Inf. Theory 48, 1439–1450 (2002). Special Issue in honor of Aaron D. Wyner

    Article  MATH  Google Scholar 

  25. Gray, R.M.: Quantization noise spectra. IEEE Trans. Inf. Theory 36(6), 1220–1244 (1990)

    Article  Google Scholar 

  26. Gray, R.M.: Entropy and Information Theory. Springer, New York (1991)

    Google Scholar 

  27. Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10, 105–132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Güntürk, C.S.: Harmonic analysis of two problems in signal quantization and compression. Ph.D. thesis. Princeton University (2000)

  29. Güntürk, C.S.: Approximating a bandlimited function using very coarsely quantized data: improved error estimates in Sigma–Delta modulation. J. Am. Math. Soc. 17, 229–242 (2004)

    Article  MATH  Google Scholar 

  30. Güntürk, C.S., Lagarias, J.C., Vaishampayan, V.A.: On the robustness of single loop Sigma–Delta modulation. IEEE Trans. Inf. Theory 12, 63–79 (2001)

    MATH  Google Scholar 

  31. Güntürk, C.S., Daubechies, I., DeVore, R., Vaishampayan, V.: A/D conversion with imperfect quantizers. IEEE Trans. Inf. Theory 52, 874–885 (2006)

    Article  Google Scholar 

  32. Holmes, R., Paulsen, V.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007). Feature article

    Article  Google Scholar 

  34. Kovačević, J., Chebira, A.: Life beyond bases: the advent of frames (Part II). IEEE Signal Process. Mag. 24(5), 115–125 (2007). Feature article

    Article  Google Scholar 

  35. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  36. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  37. McEliece, R.J.: The Theory of Information and Coding, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  38. Norsworthy, S.R., Schreier, R., Temes, G.C. (eds.): Delta–Sigma Data Converters. IEEE Press, New York (1997)

    Google Scholar 

  39. Pinault, S.C., Lopresti, P.V.: On the behavior of the double-loop Sigma–Delta modulator. IEEE Trans. Circuits Syst. 40, 467–479 (1993)

    Article  Google Scholar 

  40. Rangan, S., Goyal, V.K.: Recursive consistent estimation with bounded noise. IEEE Trans. Inf. Theory 47(1), 457–464 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  42. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    MathSciNet  Google Scholar 

  43. Thao, N.T., Vetterli, M.: Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates. IEEE Trans. Signal Process. 43(3), 519–531 (1994)

    Article  Google Scholar 

  44. Thao, N.T., Vetterli, M.: Reduction in the MSE in R-times oversampled A/D conversion from o(1/r) to o(1/r 2). IEEE Trans. Signal Process. 42(1), 200–203 (1994)

    Article  Google Scholar 

  45. Wang, Y.: Sigma–Delta quantization errors and the traveling salesman problem. Adv. Comput. Math. 28, 101–118 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wiener, N., Paley, R.E.A.C.: Fourier Transforms in the Complex Domain, vol. 19, Am. Math. Soc. Colloq. Publ., Providence (1934)

    MATH  Google Scholar 

  47. Yılmaz, Ö.: Stability analysis for several Sigma–Delta methods of coarse quantization of bandlimited functions. Constr. Approx. 18, 599–623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yılmaz, Ö.: Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmon. Anal. 14, 107–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Zimmermann, G.: Normalized tight frames in finite dimensions. In: Jetter, K., Haussmann, W., Reimer, M. (eds.) Recent Progress in Multivariate Approximation, pp. 249–252. Birkhäuser, Basel (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Benedetto.

Additional information

Communicated by Ronald A. DeVore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, J.J., Oktay, O. Pointwise Comparison of PCM and Σ Δ Quantization. Constr Approx 32, 131–158 (2010). https://doi.org/10.1007/s00365-010-9083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9083-x

Keywords

Mathematics Subject Classification (2000)

Navigation