Skip to main content
Log in

Memoryless scalar quantization for random frames

  • Original Article
  • Published:
Sampling Theory, Signal Processing, and Data Analysis Aims and scope Submit manuscript

Abstract

Memoryless scalar quantization (MSQ) is a common technique to quantize generalized linear samples of signals. The non-linear nature of quantization makes the analysis of the corresponding approximation error challenging, often resulting in the use of a simplifying assumption, called the “white noise hypothesis” (WNH) that is useful, yet also known to be not rigorous and, at least in certain cases, not valid. We obtain rigorous reconstruction error estimates without relying on the WNH in the setting where generalized samples of a fixed deterministic signal are obtained using (the analysis matrix of) a random frame with independent isotropic sub-Gaussian rows; quantized using MSQ; and reconstructed linearly. We establish non-asymptotic error bounds that explain the observed error decay rate as the number of measurements grows, which in the special case of Gaussian random frames show that the error approaches a (small) non-zero constant lower bound. We also extend our methodology to dithered and noisy settings as well as the compressed sensing setting where we obtain rigorous error bounds that agree with empirical observations, again, without resorting to the WNH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is worth to note, though, that when \(y-Q(y)\) is “shaped”, other left inverses such as “Sobolev duals” may yield significantly better reconstructions, e.g., [5, 19, 21, 33, 38].

  2. Note that one-bit MSQ provides a yet simpler quantization method. The analysis of the one-bit MSQ turns out to be significantly different from the multi-bit MSQ and is not within the scope of this paper, e.g., see [1, 8, 43].

References

  1. Ai, A., Lapanowski, A., Plan, Y., Vershynin, R.: One-bit compressed sensing with non-Gaussian measurements. Linear Algebra Appl. 441, 222–239 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bandeira, A.S., Dobriban, E., Mixon, D.G., Sawin, W.F.: Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59(6), 3448–3450 (2013)

  3. Benedetto, J., Powell, A., Yilmaz, Ö.: Sigma-delta quantization and finite frames. IEEE Trans. Inf. Theory 52(5), 1990–2005 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bennett, W.: Spectra of quantized signals. Bell Syst. Tech. J. 27, 446–472 (1948)

    Article  MathSciNet  Google Scholar 

  5. Blum, J., Lammers, M., Powell, A., Yılmaz, Ö.: Sobolev duals in frame theory and \(\Sigma \Delta \) quantization. J. Fourier Anal. Appl. 16(3), 365–381 (2010)

    Article  MathSciNet  Google Scholar 

  6. Borodachov, S., Wang, Y.: Lattice quantization error for redundant representations. Appl. Comput. Harmon. Anal. 27(3), 334–341 (2009)

    Article  MathSciNet  Google Scholar 

  7. Boufounos, P., Baraniuk, R.: 1-bit compressive sensing. In: Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on, pp. 16–21. IEEE (2008)

  8. Boufounos, P.T.: Reconstruction of sparse signals from distorted randomized measurements. In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp. 3998–4001. IEEE (2010)

  9. Boufounos, P.T., Jacques, L., Krahmer, F., Saab, R.: Quantization and compressive sensing. In: Compressed Sensing and its Applications, pp. 193–237. Springer, New York (2015)

  10. Boufounos, P.T.: Quantization and erasures in frame representations. PhD thesis, Massachusetts Institute of Technology (2006)

  11. Boufounos, P.T.: Universal rate-efficient scalar quantization. IEEE Trans. Inf. Theory 58(3), 1861–1872 (2011)

    Article  MathSciNet  Google Scholar 

  12. Buldygin, V., Kozachenko, Yu.: Sub-gaussian random variables. Ukr. Math. J. 32(6), 483–489 (1980)

    Article  MathSciNet  Google Scholar 

  13. Tony Cai, T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory 60(1), 122–132 (2014)

    Article  MathSciNet  Google Scholar 

  14. Candes, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  15. Candès, E.J.: Compressive sampling. In: Proceedings of the international congress of mathematicians, volume 3, pp. 1433–1452 (2006)

  16. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  17. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

  18. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  19. Chou, E., Güntürk, C.S.: Distributed noise-shaping quantization: I. Beta duals of finite frames and near-optimal quantization of random measurements. Constr. Approx. 44(1), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  20. Chou, E., Güntürk, C.S.: Distributed noise-shaping quantization: II. Classical frames. In: Excursions in Harmonic Analysis, Vol. 5, pp. 179–198. Springer, New York (2017)

  21. Chou, Evan, Güntürk, C Sinan, Krahmer, Felix, Saab, Rayan, Yılmaz, Özgür: Noise-shaping quantization methods for frame-based and compressive sampling systems. In: Sampling theory, a renaissance, pp 157–184. Springer, New York (2015)

  22. Cvetkovic, Z.: Resilience properties of redundant expansions under additive noise and quantization. IEEE Trans. Inf. Theory 49(3), 644–656 (2003)

    Article  MathSciNet  Google Scholar 

  23. Cvetkovic, Z., Vetterli, M.: On simple oversampled A/D conversion in \(l^2(\mathbb{R})\). IEEE Trans. Inf. Theory 47(1), 146–154 (2001)

    Article  Google Scholar 

  24. Dirksen, S.: Quantized compressed sensing: a survey. In: Compressed Sensing and Its Applications, pp. 67–95. Springer, New York (2019)

  25. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  26. Epstein, C.: Introduction to the Mathematics of Medical Imaging. SIAM, New Delhi (2007)

    Book  Google Scholar 

  27. Feng, J.-M., Krahmer, F.: An RIP-based approach to \(\Sigma \Delta \) quantization for compressed sensing. IEEE Signal Process. Lett. 21(11), 1351–1355 (2014)

    Article  Google Scholar 

  28. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001)

    Article  MathSciNet  Google Scholar 

  29. Goyal, V.K., Vetterli, M., Thao, N.: Quantized overcomplete expansions in \(\mathbb{R}^n\): analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44(1), 16–31 (1998)

    Article  Google Scholar 

  30. Goyal, V.K., Vetterli, M., Thao, N.T.: Quantized overcomplete expansions in \(\mathbb{R}^N\): analysis, synthesis, and algorithms. IEEE Trans. Inf. Theory 44, 16–31 (1998)

    Article  Google Scholar 

  31. Gray, R.: Quantization noise spectra. IEEE Trans. Inf. Theory 36(6), 1220–1244 (1990)

    Article  Google Scholar 

  32. Gray, R.M., jun, T.G.: Stockham. Dithered quantizers. IEEE Trans. Inf. Theory 39(3), 805–812 (1993)

    Article  Google Scholar 

  33. Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yilmaz, Ö.: Sobolev duals for random frames and Sigma-Delta quantization of compressed sensing measurements. Found. Comput. Math. 13, 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  34. Jacques, L., Hammond, D., Fadili, J.: Dequantizing compressed sensing: when oversampling and non-gaussian constraints combine. IEEE Trans. Inf. Theory 57(1), 559–571 (2011)

    Article  MathSciNet  Google Scholar 

  35. Jacques, L., Hammond, D.K., Fadili, M.J.: Stabilizing nonuniformly quantized compressed sensing with scalar companders. IEEE Trans. Inf. Theory 59(12), 7969–7984 (2013)

    Article  MathSciNet  Google Scholar 

  36. Jacques, L., Laska, J., Boufounos, P., Baraniuk, R.: Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inf. Theory 59(4), 2082–2102 (2013)

    Article  MathSciNet  Google Scholar 

  37. Jimenez, D., Wang, L., Wang, Y.: The white noise hypothesis for uniform quantization errors. SIAM J. Math Anal. 38, 2042–2056 (2007)

    Article  MathSciNet  Google Scholar 

  38. Krahmer, F., Saab, R., Yilmaz, Ó.: Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing. Inf. Inference 3, 40–58 (2014)

    Article  MathSciNet  Google Scholar 

  39. Kushner, H.B., Levy, A.V., Meisner, M.: Almost uniformity of quantization errors. IEEE Trans. Instrum. Meas. 40, 682–687 (1991)

    Article  Google Scholar 

  40. Li, Z., Wenbo, X., Zhang, X., Lin, J.: A survey on one-bit compressed sensing: theory and applications. Front. Comput. Sci. 12(2), 217–230 (2018)

    Article  Google Scholar 

  41. Melnykova, K.: Theory and algorithms for compressive data acquisition under practical constraints. PhD thesis, University of British Columbia (2021)

  42. Moshtaghpour, A., Jacques, L., Cambareri, V., Degraux, K., De Vleeschouwer, C.: Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing. IEEE Signal Process. Lett. 23(1), 25–29 (2016)

    Article  Google Scholar 

  43. Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Commun. Pure Appl. Math. 66(8), 1275–1297 (2013)

    Article  MathSciNet  Google Scholar 

  44. Powell, A., Saab, R., Yılmaz, Ö.: Quantization and finite frames. In: Finite frames, pp. 267–302. Springer, New York (2013)

  45. Powell, A.M., Whitehouse, J.T.: Error bounds for consistent reconstruction: random polytopes and coverage processes. Found. Comput. Math. 16(2), 395–423 (2016)

    Article  MathSciNet  Google Scholar 

  46. Rudelson, M., Vershynin, R.: Non-asymptotic theory of random matrices: extreme singular values. In: Proceedings of the International Congress of Mathematicians, volume 3, pp. 1576–1602, New Delhi, Hindustan Book Agency (2010)

  47. Saab, R., Wang, R., Yılmaz, Ö.: From compressed sensing to compressed bit-streams: practical encoders, tractable decoders. IEEE Trans. Inf. Theory 64(9), 6098–6114 (2018)

  48. Saab, R., Wang, R., Yılmaz, Ö.: Quantization of compressive samples with stable and robust recovery. Appl. Comput. Harmon. Anal. 44(1), 123–143 (2018)

    Article  MathSciNet  Google Scholar 

  49. Shevtsova, I.G.: An improvement of convergence rate estimates in the lyapunov theorem. In: Doklady Mathematics, volume 82, pp. 862–864. Springer, New York (2010)

  50. Shi, H.-J.M., Case, M., Gu, X., Tu, S., Needell, D.: Methods for quantized compressed sensing. In: 2016 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE (2016)

  51. Tillmann, A.M., Pfetsch, M.E.: The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inf. Theory 60(2), 1248–1259 (2014)

    Article  MathSciNet  Google Scholar 

  52. Vershynin, R.: Introduction to the Non-asymptotic Analysis of Random Matrices, pp. 210–268. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  53. Viswanathan, H., Zamir, R.: On the whiteness of high-resolution quantization errors. IEEE Trans. Inf. Theory 47(5), 2029–2038 (2001)

    Article  MathSciNet  Google Scholar 

  54. Wang, Y., Xu, Z.: The performance of PCM quantization under tight frame representations. SIAM J. Math. Anal. 44, 2802–2823 (2011)

    Article  MathSciNet  Google Scholar 

  55. Wannamaker, R.A.: The Theory of Dithered Quantization. PhD thesis, University of Waterloo (2003)

  56. Xu, C., Jacques, L.: Quantized compressive sensing with rip matrices: the benefit of dithering. Inf. Inference: A J. IMA 9(3), 543–586 (2019)

  57. Zhou, H., Xu, Z.: The lower bound of the PCM quantization error in high dimension. Appl. Comput. Harmon. Anal. 38(1), 148–160 (2015)

  58. Zymnis, A., Boyd, S., Candés, E.J.: Compressed sensing with quantized measurements. Signal Process. Lett. IEEE 17(2), 149–152 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a UBC 4YF Fellowship (KM), an NSERC Discovery Accelerator Award (OY), and an NSERC Discovery Grant (OY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna Melnykova.

Additional information

Communicated by Alex Powell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnykova, K., Yilmaz, Ö. Memoryless scalar quantization for random frames. Sampl. Theory Signal Process. Data Anal. 19, 12 (2021). https://doi.org/10.1007/s43670-021-00012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43670-021-00012-4

Keywords

Mathematics Subject Classification

Navigation