Skip to main content
Log in

Ca2+ regulation of heart contractility in Octopus

  • ORIGINAL PAPER
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Isometric force development of electrically paced preparations isolated from the systemic heart of Octopus vulgaris were utilized to examine the regulation of contractility by Ca2+. Increases in extracellular Ca2+, to the physiological level, resulted in enhancement of twitch force. For instance, at 36 beats · min−1 an increase in Ca2+ from 3 to 9 mmol · l−1 resulted in a threefold increase in twitch force development. When steady-state contraction at 12 beats · min−1 was followed by a rest period of either 5 or 10 min, the first contraction always exhibited either an increase in twitch force or stayed unchanged such that post-rest twitch force was about 133% of the last value in the steady-state train. Ryanodine (12.5 μmol · l−1), which is considered to be a specific inhibitor of the Ca2+ storage and release capabilities of the sarcoplasmic reticulum (SR), was applied to further assess Ca2+ handling. Twitch force fell to about 22% of the preteatment level in preparations paced at either 12 or 36 beats · min−1. In all preparations the frequency transition from 12 to 36 beats · min−1 was associated with an increase in resting tension. The␣increase␣was 37 ± 14% prior to ryanodine treatment and was significantly elevated to 127 ± 33% following treatment. When steady-state contraction at 36 beats · min−1 was followed by a rest period of 10 s, the first contraction was not significantly different from the last beat in the train prior to ryanodine; however, with ryanodine treatment, post-rest twitch force development significantly decreased. Twitch force development was regular at pacing rates of up to 300 beats · min−1. Twitch force was maintained up to rates of 84 beats · min−1 but␣decreased thereafter and reached a value of about 10% at 300 beats · min−1. Resting tension increased substantially as frequency was elevated from 12 to 36 beats · min−1 and then gradually increased as frequency was further elevated to 180 beats · min−1. In conclusion, the Octopus ventricle is dependent upon extracellular Ca2+ for contraction. A post-rest potentiation of force development, the negative impact of ryanodine, and the ability to respond regularly at high pacing rates imply a strong reliance on the SR in Ca2+ cycling based on criteria established for vertebrate hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Accepted: 19 January 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesser, H., Driedzic, W., Rantin, F. et al. Ca2+ regulation of heart contractility in Octopus. J Comp Physiol B 167, 474–480 (1997). https://doi.org/10.1007/s003600050099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003600050099

Navigation