Skip to main content

Advertisement

Log in

Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Climate change poses one of the greatest threats to biodiversity. Most analyses of the impacts have focused on changes in mean temperature, but increasing variance will also impact organisms and populations. We assessed the combined effects of the mean and the variance of temperature on thermal tolerances—i.e., critical thermal maxima, critical thermal minima, scope of thermal tolerance, and survival in Drosophila melanogaster. Our six experimental climatic scenarios were: constant mean with zero variance or constant variance or increasing variance; changing mean with zero variance or constant variance or increasing variance. Our key result was that environments with changing thermal variance reduce the scope of thermal tolerance and survival. Heat tolerance seems to be conserved, but cold tolerance decreases significantly with mean low as well as changing environmental temperatures. Flies acclimated to scenarios of changing variance—with either constant or changing mean temperatures—exhibited significantly lower survival rate. Our results imply that changing and constant variances would be just as important in future scenarios of climate change under greenhouse warming as increases in mean annual temperature. To develop more realistic predictions about the biological impacts of climate change, such interactions between the mean and variance of environmental temperature should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araújo MB, Ferri-Yáñez F, Bozinovic F, Chown SL, Marquet PA, Valladares F (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Article  PubMed  Google Scholar 

  • Baldanzi S, Weidberg NF, Fusi M, Cunnicci S, McQuaid CD, Porri F (2015) Contrasting environments shape thermal physiology across the spatial range of the sand hopper Talorchestia capensis. Oecologia 179:1067–1078

    Article  PubMed  Google Scholar 

  • Borgman CC, Wolf BO (2016) The indirect effects of climate variability on the reproductive dynamics and productivity of an avian predator in the arid southwest. Oecologia 180:279–291

    Article  PubMed  Google Scholar 

  • Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, aging and senescence? Biol Rev 83:339–355

    Article  PubMed  Google Scholar 

  • Bozinovic F, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozinovic F, Calosi P, Spicer JI (2011a) Physiological correlates of geographic range in animals. Annu Rev Ecol Evol Syst 42:155–179

    Article  Google Scholar 

  • Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ (2011b) The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool 84:543–552

    Article  PubMed  Google Scholar 

  • Bozinovic F, Catalán TP, Estay SA, Sabat P (2013) Acclimation to daily thermal variability drives the metabolic performance curve. Evol Ecol Res 15:579–587

    Google Scholar 

  • Bozinovic F, Orellana MJ, Martel SI, Bogdanovich JM (2014) Testing the heat-invariant and cold-variability tolerance hypotheses across geographic ranges. Comp Biochem Physiol 178:46–50

    Article  CAS  Google Scholar 

  • Bozinovic F, Sabat P, Rezende EL, Canals M (2016) Temperature variability and thermal performance in ectotherms: acclimation, behaviour, and experimental considerations. Evol Ecol Res 17:111–124

    Google Scholar 

  • Burroughs WJ (2007) Climate change: a multidisciplinary approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clavijo-Baquet S, Boher F, Ziegler L, Martel SI, Estay SA, Bozinovic F (2014) Differential responses to thermal variation between fitness metrics. Sci Rep 4:5349. doi:10.1038/srep05349

    Article  PubMed  Google Scholar 

  • Colinet H, Sickair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140

    Article  CAS  PubMed  Google Scholar 

  • Cooper BS, Tharp JM II, Jernberg MJ Angilletta (2012) Developmental plasticity of thermal tolerances in temperate and subtropical populations of Drosophila melanogaster. J Therm Biol 37:211–216

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Estay SA, Clavijo-Baquet S, Lima M, Bozinovic F (2011) Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum. Poppul Ecol 53:53–58

    Article  Google Scholar 

  • Estay SA, Lima M, Bozinovic F (2014) The role of temperature variability on insect performance and population dynamics in a warming world. Oikos 123:131–140

    Article  Google Scholar 

  • Folguera G, Bastías DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol 154A:389–393

    Article  CAS  Google Scholar 

  • Gilchrist GW, Huey RB (1999) The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity 83:15–29

    Article  PubMed  Google Scholar 

  • Gould SJ (1985) The median isn’t the message. Discover 6:4042

    Google Scholar 

  • Hoffmann AA (2010) Physiological climatic limits in Drosophila: patterns and implications. J Exp Biol 213:870–880

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Shirriffs J, Scott M (2005) Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct Ecol 19:222–227

    Article  Google Scholar 

  • IPCC (2014) Impacts, adaptation, and vulnerability. In: Barros VR, Field CB, Dokken DJ, Mastrandea MD, Macj KJ, Bilir TE, Chaterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracjken S, Mastrandea PR, White LL (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ji X, Gao J, Han J (2007) Phenotypic responses of hatchlings to constant versus fluctuate incubation temperatures in the multi-banded krait, Bungarus multicintus (Elapidae). Zool Sci 24:384–390

    Article  PubMed  Google Scholar 

  • Kern P, Cramp RL, Franklin CE (2015) Physiological responses of ectotherms to daily temperature variation. J Exp Biol 218:3068–3076

    Article  PubMed  Google Scholar 

  • Kingsolver Ragland GJ JG (2008) The effect of fluctuating temperatures on ectotherm life-history traits: comparisons among geographic populations of Wyeomyia smithii. Evol Ecol Res 10:29–44

    Google Scholar 

  • Krams I, Daukste J, Kivleniece I, Krama T, Rantala MJ (2011) Overwintering survival on immune defence and body length in male Aquarius najas water striders. Entomol Exp Appl 140:45–51

    Article  Google Scholar 

  • Kubisch EL, Fernández JB, Ibargüengoytía NR (2016) Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. J Comp Physiol B 186:243–253

    Article  PubMed  Google Scholar 

  • Lawson CR, Vindenes Y, Bailey L, van de Pol M (2015) Environmental variation and population responses to global change. Ecol Lett 18:724–736

    Article  PubMed  Google Scholar 

  • Levins R (1968) Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Ohtsu T, Kimura MT, Hori SH (1992) Energy storage during reproductive diapause in the Drosophila melanogaster species group. J Comp Physiol B 162:203–208

    Article  CAS  PubMed  Google Scholar 

  • Orcutt JD, Porter KG (1983) Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol Oceanogr 28:720–730

    Article  Google Scholar 

  • Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 107:15135–15139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkash D, Aggarwal DD, Singh D, Lambhod C, Ranga P (2013) Divergence of water balance mechanisms in two sibling species (Drosophila simulans and D. melanogaster): effects of growth temperatures. J Comp Physiol B 183:359–378

    Article  PubMed  Google Scholar 

  • Pétavy G, David JR, Debat V, Gibert P, Moreteau B (2004) Specific effects of cycling stressful temperatures upon phenotypic and genetic variability of size traits in Drosophila melanogaster. Evol Ecol Res 6:873–890

    Google Scholar 

  • Richter S, Kipfer T, Wohlgemuth T, Calderon-Guerrero C, Ghazoul J, Moser B (2012) Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169:269–279

    Article  PubMed  Google Scholar 

  • Rojas JM, Castillo SB, Folguera G, Abades S, Bozinovic F (2014) Coping with daily thermal variability: behavioral performance of an ectotherm model in a warming world. PLoS One 9(9):e106897

    Article  PubMed  PubMed Central  Google Scholar 

  • Schou MF, Kristensen TN, Kellermann V, Schlötterer C, Loeschke V (2014) A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. J Evol Biol 27:1859–1868

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui WH, Barlow CA (1972) Population growth of Drosophila melanogaster (Diptera: Drosophilidae) at constant and alternating temperatures. Ann Entomol Soc Am 65:993–1001

    Article  Google Scholar 

  • Somero GN (2011) Comparative physiology: a ‘crystal ball’ for predicting consequences of global change. Am J Physiol 302:R1–R14

    Google Scholar 

  • StatSoft, Inc. (2001) STATISTICA. http://www.statsoft.com

  • Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA 111:5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terblanche JS, Klok CJ, Krafsur ES, Chown SL (2006) Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am J Trop Med Hyg 74:786–794

    PubMed  PubMed Central  Google Scholar 

  • Terblanche JS, Nyamukoniwa C, Elsje K (2010) Thermal variability alters climatic stress resistance and plastic response in a global invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol Exp Appl 137:304–315

    Article  Google Scholar 

  • Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B 281:2013–2612

    Google Scholar 

  • Vazquez DP, Gianoli E, Morris WF, Bozinovic F (2015) Evolutionary and ecological impacts of increased climatic variability. Biol Rev. doi:10.1111/brv.12216

    PubMed  Google Scholar 

  • Wang G, Dillon ME (2014) Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat Clim Change 4:988–999

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Williams CM, Marshall KE, MacMillan HA, Dzursin JDK, Hellmann JJ, Sinclair BJ (2012) Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS One 7:e34470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Rudolf VHW, Ma C (2015) Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest. Oecologia 179:947–957

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All experimental procedures were approved by the Universidad Católica animal care committee. Funded by FONDECYT-1130015, FONDECYT-3140450 to GC and CAPES FB002 line 3 to FB. We thank Claudio Latorre for valuable commentaries and three anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bozinovic.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozinovic, F., Medina, N.R., Alruiz, J.M. et al. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. J Comp Physiol B 186, 581–587 (2016). https://doi.org/10.1007/s00360-016-0980-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-016-0980-6

Keywords

Navigation