Skip to main content
Log in

Brooding strategy in fluctuating salinity environments: oxygen availability in the pallial cavity and metabolic stress in females and offspring in the Chilean oyster Ostrea chilensis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Organisms that encounter stressful situations in nature often cope using behavioral (e.g., avoidance) or physiological tactics. In sessile mollusks, the only available behavioral option in dealing with salinity stress is to “clam up”, isolating their tissues from the environment. Though effective in the short term, prolonged isolation can have detrimental physiological consequences, particularly for females brooding embryos in a mantle cavity that is isolated from the external environment. In the Quempillén estuary, the Chilean oyster, Ostrea chilensis, spent nearly one-third of its brooding season at salinities low enough to cause female isolation. When females thus isolated themselves, the dissolved oxygen in their mantle cavity fluid dropped to hypoxic levels within 10 min. In females that were brooding embryos, this depletion of oxygen was not uniform: oxygen was depleted more quickly in the palp region (where embryos accumulate) than in the inhalant region. Additionally, oxygen was reduced even more quickly in the palp region when females were brooding late-stage embryos, which consumed oxygen significantly more quickly than embryos in earlier developmental stages. Finally, O. chilensis used anaerobic metabolism to cope with the hypoxia induced by isolation, as lactate accumulated in the tissues of both females (brooding > non-brooding) and embryos (late stage > early stage). Our findings demonstrate the trade-off between an adaptive avoidance behavior (clamming up) and the potentially detrimental consequences brought on by such a behavior (hypoxia). Cycling of embryos throughout the mantle cavity by deliberate female pumping keeps them from accumulating in the area between the palps, forestalling the creation of hypoxic conditions there. In addition, the capacity for anaerobic metabolism by both females and their embryos should help them tolerate the low oxygen levels that do eventually arise when the pallial cavity is isolated from the surrounding environment during long periods of reduced ambient salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bayne BL, Bayne CJ, Carefoot TC, Thompson RJ (1976) The physiological ecology of Mytilus californianus Conrad. 1. Metabolism and energy balance. Oecologia (Berlin) 22:211–228

    Article  Google Scholar 

  • Beauchamp KA (1986) Reproductive ecology of the brooding, hermaphroditic clam Lasaea subviridis. Mar Biol 93:225–235

    Article  Google Scholar 

  • Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355:115–126

    Article  CAS  Google Scholar 

  • Brante A (2005) An alternative mechanism to reduce intracapsular hypoxia in ovicapsules of Fusitriton oregonensis (Gastropoda). Mar Biol 149:269–274

    Article  Google Scholar 

  • Brante A, Fernández M, Viard F (2008) Effect of oxygen conditions on intracapsular development in two Calyptraeid species with different modes of larval development. Mar Ecol Prog Ser 368:197–207

    Article  Google Scholar 

  • Browen CE (1987) Pyruvate metabolism in Haliotis (ormer/abalone): lactate dehydrogenase, pyruvate kinase and opine dehydrogenase activities. Comp Biochem Physiol B. 86:219–226

    Google Scholar 

  • Chaparro OR, Thompson RJ, Ward JE (1993) In vivo observations of larval brooding in the Chilean oyster, Ostrea chilensis Philippi, 1845. Biol Bull 185:365–372

    Article  Google Scholar 

  • Chaparro OR, Videla JA, Thompson RJ (2001) Gill morphogenesis in the oyster Ostrea chilensis. Mar Biol 138:199–207

    Article  Google Scholar 

  • Chaparro OR, Montiel YA, Segura CJ, Cubillos VM, Thompson RJ, Navarro JM (2008a) The effect of salinity on clearance rate in the suspension-feeding estuarine gastropod Crepipatella dilatata under natural and controlled conditions. Estuar Coast Shelf Sci 76:861–868

    Article  Google Scholar 

  • Chaparro OR, Segura CJ, Montiel YA, Thompson RJ, Navarro JM (2008b) Variations in the quantity and composition of seston from an estuary in Southern Chile on different temporal scales. Estuar Coast Shelf Sci 76:845–860

    Article  Google Scholar 

  • Chaparro OR, Cubillos VM, Montiel YA, Paschke KA, Pechenik JA (2008c) Embryonic encapsulation and maternal incubation: requirements for survival of the early stages of the estuarine gastropod Crepipatella dilatata. J Exp Mar Biol Ecol 365:38–45

    Article  Google Scholar 

  • Chaparro OR, Montory JA, Segura CJ, Pechenik JA (2009a) Effect of reduced pH on shells of brooded veligers in the estuarine bivalve Ostrea chilensis Philippi 1845. J Exp Mar Biol Ecol 377:107–112

    Article  CAS  Google Scholar 

  • Chaparro OR, Segura CJ, Montory JA, Navarro JM, Pechenik JA (2009b) Brood chamber isolation during salinity stress in two estuarine mollusk species: from a protective nursery to a dangerous prison. Mar Ecol Prog Ser 374:145–155

    Article  Google Scholar 

  • Chaparro OR, Montory JA, Pechenik JA, Cubillos VM, Navarro JM, Osores SJ (2011) Ammonia accumulation in the brood chamber of the estuarine gastropod Crepipatella dilatata: How big a problem for mothers and brooded embryos? J Exp Mar Biol Ecol 410:29–38

    Article  CAS  Google Scholar 

  • Chaparro OR, Segura CJ, Osores SJA, Pechenik JA, Pardo LM, Cubillos VM (2014) Consequences of maternal isolation from salinity stress for brooded embryos and future juveniles in the estuarine direct-developing gastropod Crepipatella dilatata. Mar Biol 161:619–629

    Article  Google Scholar 

  • Cheung SG, Lam SW (1995) Effects of salinity, temperature and acclimation on oxygen consumption of Nassarius festivus (Powys 1835) (Gastropoda: Nassariidae). Comp Biochem Physiol 111:625–631

    Article  Google Scholar 

  • Cheung SG, Chan HY, Liu CC, Shin PKS (2008) Effect of prolonged hypoxia on food consumption, respiration, growth and reproduction in marine scavenging gastropod Nassarius festivus. Mar Pollut Bull 57:280–286

    Article  CAS  PubMed  Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol An Ann Rev 33:245–303

    Google Scholar 

  • Djangmah JS, Shumway SE, Davenport J (1979) Effects of fluctuating salinity on the behaviour of the West African blood clam Anadara senilis and on the osmotic pressure and ionic concentrations of the haemolymph. Mar Biol 50:209–213

    Article  CAS  Google Scholar 

  • Dyer KR (1998) Estuary: a physical introduction, 2nd edn. Wiley Inc, New York

    Google Scholar 

  • Fretter V (1984) Prosobranchs. In: Tompa AS, Verdonk NH, van der Biggelaar JAM (eds) Reproduction. The Mollusca, 7. Academic Press, Orlando, pp 1–45

    Google Scholar 

  • Gäde G (1983) Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. J Exp Zool 228:415–429

    Article  Google Scholar 

  • Gäde G (1988) Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusk Haliotis lamellosa: formation of the novel anaerobic end product tauropine. Biol Bull 175:122–131

    Article  Google Scholar 

  • Gallardo CS (1993) Reproductive habits and life cycle of the small clam Kingiella chilenica (Bivalvia: Cyamiidae) in an estuarine sand flat from South of Chile. Mar Biol 115:595–603

    Article  Google Scholar 

  • Guerin JL, Stickle WB (1997) Effect of salinity on survival and bioenergetics of juvenile lesser blue crabs, Callinectes similis. Mar Biol 129:63–69

    Article  Google Scholar 

  • Hammen CS (1969) Metabolism of the oyster, Crassostrea virginica. Am Zool 9:309–318

    Google Scholar 

  • Hand SC, Stickle WB (1977) Effects of tidal fluctuations of salinity on pericardial fluid composition of the American oyster Crassostrea virginica. Mar Biol 42:259–271

    Article  CAS  Google Scholar 

  • Higgins PJ (1980) Effects of food availability on the valve movements and feeding behavior of juvenile Crassostrea virginica. I. valve movements and periodic activity. J Exp Mar Biol Ecol 45:229–244

    Article  Google Scholar 

  • Ituarte C (2009) Unusual modes of oogenesis and brooding in bivalves: the case of Gaimardia trapesina (Mollusca: Gaimardiidae). Inv Biol 128:243–251

    Article  Google Scholar 

  • Kan-no N, Sato M, Yokoyama T, Nagahisa E (1999) Occurrence of β-alanina-specific opine dehydrogenase in the muscle of the limpet Cellana grata Gould (Archaeogastropoda). Comp Biochem Physiol 123:125–136

    Article  CAS  Google Scholar 

  • Kinne O (1971) Salinity, animals: invertebrates, Environmental factors. Part 2. In: A comprehensive, integrated treatise on life in oceans and coastal waters, vol I. Marine Ecology, pp 821–995

  • Mackie GL (1984) Bivalves. In: The mollusca. Reproduction. Tompa AS, Verdonk NH, Van Den Biggerlaar J (eds) Vol 7. Academic Press, Orlando, pp 351–418

  • Mangum C, Van Winkle W (1973) Responses of aquatic invertebrates to declining oxygen conditions. Am Zool 13:529–541

    Google Scholar 

  • Montory JA, Chaparro OR, Cubillos VM, Pechenik JA (2009) Isolation of incubation chambers during brooding: effect of reduced pH on protoconch development in the estuarine gastropod Crepipatella dilatata (Calyptraeidae). Mar Ecol Prog Ser 374:157–166

    Article  Google Scholar 

  • Morton B (1977) The occurrence of inflammatory granulomas in the ctenidial marsupium of Corbicula fluminea (Mollusca: Bivalvia): a consequence of larval incubation. J Invertebr Pathol 30:5–14

    Article  Google Scholar 

  • Navarro JM (1988) The effects of salinity on the physiological ecology of Choromytilus chorus (Molina 1782) Bivalvia: Mytilidae. J Exp Mar Biol Ecol 122:19–33

    Article  Google Scholar 

  • Nelson TC (1946) Circulation of embryos in the branchial chamber of Ostrea cristata. (Abstr.). Anat Rec 94:355

    Google Scholar 

  • Oyarzun FX, Strathmann RR (2011) Plasticity of hatching and the duration of planktonic development in marine invertebrates. Integrat Comp Biol 51:81–90

    Article  Google Scholar 

  • Padilla M, Méndez M, Casanova F (1969) Observaciones sobre el comportamiento de la Ostrea chilensis en Apiao. Bol Cient Inst Fom Pesq 10:1–31

    Google Scholar 

  • Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297

    Article  Google Scholar 

  • Pechenik JA (2006) Larval experience and latent effects-metamorphosis is not a new beginning. Integr Comp Biol 46:323–333

    Article  PubMed  Google Scholar 

  • Richard PE, Dietz TH, Silverman H (1991) Structure of the gill during reproduction in the unionids Anodonta grandis, Ligumia subrostrata, and Carunculina parva texasensis. Can J Zool 69:1744–1754

    Article  Google Scholar 

  • Richardson MG (1979) The ecology and reproduction of the brooding antarctic bivalve Lissarca miliaris. Br Antarct Surv Bull 49:91–115

    Google Scholar 

  • Russell MP, Huelsenbeck JP (1989) Seasonal variation in brood structure of Transennella confusa (Bivalvia: Veneridae). Veliger 32:288–295

    Google Scholar 

  • Saz HJ (1971) Facultative anaerobiosis in the invertebrates: pathways and control systems. Am Zool 11:125–135

    Google Scholar 

  • Schwartz ML, Dimock RV Jr (2001) Ultrastructural evidence for nutritional exchange between brooding unionid mussels and their glochidia larvae. Invertebr Biol 120:227–236

    Article  Google Scholar 

  • Segura CJ, Chaparro OR, Paschke KA, Pechenik JA (2010) Capsule walls as barriers to oxygen availability: Implications for the development of brooded embryos by the estuarine gastropod Crepipatella dilatata (Calyptraeidae). J Exp Mar Biol Ecol 390:49–57

    Article  Google Scholar 

  • Segura CJ, Chaparro OR, Pechenik JA, Paschke KA, Osores SJA, Navarro JM, Cubillos VM (2014) Delayed effects of severe hypoxia experienced by marine gastropod embryos. Mar Ecol Prog Ser 510:59–71

    Article  CAS  Google Scholar 

  • Shuhong Z (2006) The influence of salinity, rhythm and day length on feeding behavior in Meretrix meretrix Linnaeus. Aquaculture 252:584–590

    Article  Google Scholar 

  • Shumway SE (1977) The effect of fluctuating salinity on the tissue water content of eight species of bivalve molluscs. J Comp Physiol 116:269–285

    Article  CAS  Google Scholar 

  • Solís IF (1967) Observaciones biológicas en ostras (Ostrea chilensis Philippi) de Pullinque. Biol Pesq Chile 2:51–82

    Google Scholar 

  • Spicer JI, Strömberg JO (2003) Metabolic responses to low salinity of the shipworm Teredo navalis (L.). Sarsia 88:302–305

    Article  Google Scholar 

  • Strathmann RR, Strathmann MF (1982) The relation between adult size and brooding in marine invertebrates. Am Nat 119:91–101

    Article  Google Scholar 

  • Tankersley RA, Dimock RV Jr (1992) Quantitative analysis of the structure and function of the marsupial gills of the freshwater mussel Anodonta cataracta. Biol Bull 182:145–154

    Article  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:l–45

    Article  Google Scholar 

  • Toro JE, Chaparro OR (1990) Conocimiento biológico de Ostrea chilensis Philippi 1845. Impacto y perspectivas en el desarrollo de la ostricultura en Chile. In: Hernández A (ed) Cultivo de moluscos en América Latina. Memorias segunda reunión grupo de trabajo técnico Ancud Chiloe´ Chile November 7–11 1989. International Development Research Centre, Bogota´, pp 231–264

  • Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance, 1st edn. Cambridge University Press, Sydney

    Google Scholar 

  • Videla JA, Chaparro OR, Thompson RJ, Concha II (1998) Role of biochemical energy reserves in the metamorphosis and early juvenile development of the oyster Ostrea chilensis. Mar Biol 132:635–640

    Article  Google Scholar 

  • Woods HA, Moran AL (2008) Oxygen profiles in egg masses predicted from a diffusion–reaction model. J Exp Biol 211:790–797

    Article  PubMed  Google Scholar 

  • Zwaan A, Wijsman TCM (1976) Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp Biochem Physiol 54:313–324

    Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Olga Rodriguez for her help collecting oysters at the Quempillén field station (Universidad Austral de Chile), where a part of this study was performed. This research was supported by the Fondecyt-Chile 1100335 and 1141052 (Fondo Nacional de Investigación Científica y Tecnológica, Chile) and Enlace grant from Dirección de Investigación y Desarrollo from Universidad Austral de Chile to ORC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar R. Chaparro.

Additional information

Communicated by I. D. Hume.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 3976 kb)

Supplementary material 2 (MOV 3505 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segura, C.J., Montory, J.A., Cubillos, V.M. et al. Brooding strategy in fluctuating salinity environments: oxygen availability in the pallial cavity and metabolic stress in females and offspring in the Chilean oyster Ostrea chilensis . J Comp Physiol B 185, 659–668 (2015). https://doi.org/10.1007/s00360-015-0908-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0908-6

Keywords

Navigation