Skip to main content

Advertisement

Log in

A review of gastric processing in decapod crustaceans

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This article reviews the mechanical processes associated with digestion in decapod crustaceans. The decapod crustacean gut is essentially an internal tube that is divided into three functional areas, the foregut, midgut, and hindgut. The foregut houses the gastric mill apparatus which functions in mastication (cutting and grinding) of the ingested food. The processed food passes into the pyloric region of the foregut which controls movement of digesta into the midgut region and hepatopancreas where intracellular digestion takes place. The movements of the foregut muscles and gastric mill are controlled via nerves from the stomatogastric ganglion. Contraction rates of the gastric mill and foregut muscles can be influenced by environmental factors such as salinity, temperature, and oxygen levels. Gut contraction rates depend on the magnitude of the environmental perturbation and the physiological ability of each species. The subsequent transit of the digesta from the foregut into the midgut and through the hindgut has been followed in a wide variety of crustaceans. Transit rates are commonly used as a measure of food processing rates and are keys in understanding strategies of adaptation to trophic conditions. Transit times vary from as little as 30 min in small copepods to over 150 h in larger lobsters. Transit times can be influenced by the size and the type of the meal, the size and activity level of an animal and changes in environmental temperature, salinity and oxygen tension. Ultimately, changes in transit times influence digestive efficiency (the amount of nutrients absorbed across the gut wall). Digestive efficiencies tend to be high for carnivorous crustaceans, but somewhat lower for those that consume plant material. A slowing of the transit rate allows more time for nutrient absorption but this may be confounded by changes in the environment, which may reduce the energy available for active transport processes. Given the large number of articles already published on the stomatogastric ganglion and its control mechanisms, this area will continue to be of interest to scientists. There is also a push towards studying animals in a more natural environment or even in the field and investigation of the energetic costs of the components of digestion under varying biotic and environmental conditions will undoubtedly be an area that expands in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahrens MJ, Hertz J, Lamoureux EM, Lopez GR, McElroy AE, Brownawell BJ (2001) The role of digestive surfactants in determining bioavailability of sediment-bound hydrophobic organic contaminants to two deposit-feeding polychaetes. Mar Ecol Prog Ser 212:145–157

    Article  CAS  Google Scholar 

  • Ahvenharju T, Ruohonen K (2005) Individual food intake measurement of freshwater crayfish (Pacifastacus leniusculus Dana) juveniles. Aquac Res 36:1304–1312

    Article  Google Scholar 

  • Airriess CN, McMahon BR (1994) Cardiovascular adaptations enhance tolerance of environmental hypoxia in the crab Cancer magister. J Exp Biol 190:23–41

    PubMed  Google Scholar 

  • Aldrich JC (1974) Studies on energy relationships in the spider crab Libinia emarginata (Leach). Biol Bull 147:257–273

    Article  PubMed  CAS  Google Scholar 

  • Allardyce BJ, Linton SM (2010) Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs. J Morphol 271:61–72

    Article  PubMed  Google Scholar 

  • Al-Mohanna SY (1983) The structure and function of the hepatopancreas of the shrimp Penaeus semisulcatus De Haan (Crustacea Decapoda). PhD Thesis, University of Wales, pp 1–391

  • Baars MA, Oosterhuis SS (1984) Diurnal feeding rhythms in North Sea copepods measured by gut fluorescence, enzyme activity and grazing on labelled food. Neth J Sea Res 18:97–119

    Article  Google Scholar 

  • Balss H (1944) Crustacea, Decapoda. In: Klassen und Ordnungen des Tierreiches. Band 5, Abteilung 1, Buch 7, Lieferung 3, pp 419–470

  • Barker PL, Gibson R (1977) Observations on the feeding mechanism, structure of the gut and digestive physiology of the European lobster Homarus gammarus (L.). (Decapoda: Nephropidae). J Exp Mar Biol Ecol 26:234–297

    Article  Google Scholar 

  • Barker PL, Gibson R (1978) Observations on the structure of the mouthparts, histology of the alimentary tract and digestive physiology of the mud crab Scylla serrata (Forskal) (Decapoda: Portunidae). J Exp Mar Biol Ecol 32:177–196

    Article  CAS  Google Scholar 

  • Bautista MN (1986) The response of Penaeus monodon juveniles to varying protein/energy ratios in test diets. Aquaculture 53:229–242

    Article  CAS  Google Scholar 

  • Bayer RC, Gallagher ML, Leavitt DF, Rittenburg JH (1979) A radiographic study of the lobster (Homarus americanus) alimentary canal. In: Proceedings of 10th Annual World Mariculture Society, Baton Rouge, LA, pp 561–564

  • Beseres JJ, Lawrence AL, Feller RJ (2005) Variation in fiber, protein and lipid content of shrimp feed—effects of gut passage time measured in the field. J Shell Res 24:301–308

    Google Scholar 

  • Beseres JJ, Lawrence AL, Feller RJ (2006) Practical equivalence of laboratory and field measurements of gut passage time in two penaeid shrimp species. Mar Ecol Prog Ser 309:221–231

    Article  Google Scholar 

  • Brenner TL, Wilkens JL (2001) Physiology and excitation contraction coupling in the intestinal muscle of the crayfish Procambarus clarkii. J Comp Physiol 171:613–621

    CAS  Google Scholar 

  • Brosing A (2010) Recent developments on the morphology of the brachyuran foregut ossicles and gastric teeth. Zootaxa 2510:1–44

    Google Scholar 

  • Brunson JF, Romaire RP, Reigh RC (1997) Apparent digestibility of selected ingredients in diets for white shrimp Penaeus setiferus L. Aquac Nutr 3:9–16

    Article  Google Scholar 

  • Bucher D, Taylor AL, Marder E (2006) Central pattern generating neurons simultaneously express fast and slow rhythmic activities in the stomatogastric ganglion. J Neurophysiol 95:3617–3632

    Article  PubMed  Google Scholar 

  • Calman WT (1909) Crustacea. Part 7. Third fascicle. In: Lankester ER (ed) A treatise on zoology. Adam and Black, London, p 346

    Google Scholar 

  • Carefoot TH (1990) Specific dynamic action (SDA) in the supralittoral isopod, Ligia pallasii: identification of components of apparent SDA and effects of dietary amino acid quality and content on SDA. Comp Biochem Physiol 95A:309–316

    Article  CAS  Google Scholar 

  • Carter CG, McCarthy ID, Houlihan DF, Fonesca N, Perera WMK, Sillah ABS (1995) The application of radiograph to the study of fish nutrition. J Appl Icthy 11:231–239

    Article  Google Scholar 

  • Carvalho DA, Collins PA, De Bonis CJ (2011) Gut Evacuation time of Macrobrachium borellii (Caridea: Palaemonidae) feeding on three types of prey from the littoral-benthic community. J Crust Biol 31:630–634

    Article  Google Scholar 

  • Ceccaldi HJ (1997) Anatomy and physiology of the digestive system. In: Abramo LR, Conklin DE, Akiyama DM (eds) Advances in world aquaculture, Crustacean nutrition. The world aquaculture society, vol 6. Louisiana state university, Baton Rouge, pp 261–291

    Google Scholar 

  • Choy SC (1986) Natural diet and feeding habits of the crabs Liocarcinus puber and L. holsatus (Decapoda, Brachyura, Portunidae). Mar Ecol Prog Ser 31:87–99

    Article  Google Scholar 

  • Christie AE (2011) Crustacean neuroendocrine systems and their signaling agents. Cell Tiss Res 120:1011–1023

    Google Scholar 

  • Christie AE, Skiebe P, Marder E (1995) Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. J Exp Biol 198:2431–2439

    PubMed  CAS  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Combes D, Meyrand P, Simmers J (1998a) Long term expression of two interacting motor pattern generating networks in the stomatogastric system of freely behaving lobster. J Neurophysiol 79:1396–1408

    PubMed  CAS  Google Scholar 

  • Clemens S, Massabuau JC, Legeay A, Meyrand P, Simmers J (1998b) In vivo modulation of interacting central pattern generators in lobster stomatogastric ganglion: influence of feeding and partial pressure of oxygen. J Neurosci 18:2788–2799

    PubMed  CAS  Google Scholar 

  • Clemens S, Meyrand P, Simmers J (1998c) Feeding induced changes in temporal patterning of muscle activity in the lobster stomatogastric system. Neurosci Lett 254:65–68

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft A, McLachlan A (1986) Food and feeding habits of the surf zone penaeid prawn Macropetasma africanus (Balss). PSZNI Mar Ecol 7:345–357

    Article  Google Scholar 

  • Conklin DE (1995) Digestive Physiology and nutrition. In: Factor J (ed) The lobster Homarus americanus. Academic Press, San Diego, pp 441–464

    Chapter  Google Scholar 

  • Costa DP, Sinervo B (2004) Field physiology: physiological insights from animals in nature. Ann Rev Physiol 66:209–238

    Article  CAS  Google Scholar 

  • Cox SL, Bruce MP, Ritar AJ (2009) Ingestion of artificial diets with different textures as determined by the inert marker ytterbium oxide during culture of early stage pyllostoma of the spiny lobster Jasus edwardsii. Aquac Nutrit 17:152–158

    Article  CAS  Google Scholar 

  • Cristo M (2001) Gut evacuation rates in Nephrops norvegicus, (L. 1758), Laboratory and field estimates. Sci Mar 65:341–346

    Article  Google Scholar 

  • Cruz-Suárez LE, Tapia-Salazar M, Villarreal-Cavazos D, Beltran-Rocha J, Nieto-López MG, Lemme A, Ricque-Marie D (2009) Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture 292:87–94

    Article  CAS  Google Scholar 

  • Curtis DL (2009) Integrated responses of crustaceans living in estuaries to the challenges of feeding and digestion in low salinity. PhD Thesis, University of Nevada, Las Vegas

  • Curtis DL, McGaw IJ (2010) Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister and blue crabs, Callinectes sapidus during hyposaline exposure. J Comp Physiol B 180:189–198

    Article  PubMed  CAS  Google Scholar 

  • Curtis DL, McGaw IJ (2011) A possible feeding control mechanism in Dungeness crabs during hyposaline exposure. J Crust Biol 31:313–316

    Article  Google Scholar 

  • Curtis DL, Jensen EK, McGaw IJ (2007) Behavioural influences on the physiological responses of the graceful crab, Cancer gracilis during hyposaline exposure. Biol Bull 212:222–231

    Article  PubMed  Google Scholar 

  • Curtis DL, Vanier CH, McGaw IJ (2010) The effects of starvation and acute low salinity exposure on food intake in the Dungeness crab, Cancer magister. Mar Biol 157:603–612

    Article  Google Scholar 

  • Dagg MJ, Walser WEJ (1987) Ingestion, gut passage, and egestion by the copepod Neocalanus plumchrus in the laboratory and in the subarctic Pacific Ocean. Limnol Oceanogr 32:178–188

    Article  CAS  Google Scholar 

  • Dall W (1967) The functional anatomy of the digestive tract of a shrimp Metapaneus bennettae Racke and Dall (Crustacean, Decapoda, Penaeidae). Aust J Zool 15:699–714

    Article  Google Scholar 

  • Dall W, Moriarty DJW (1983) Nutrition and digestion. In: Bliss DE (ed) The Biology of Crustacea Vol. 5. Internal anatomy and physiological regulation. Academic Press, New York, pp 215–261

    Google Scholar 

  • Dam HJ, Peterson WT (1988) The effect of temperature on the gut clearance rate constant of planktonic copepods. J Exp Mar Biol Ecol 123:1–14

    Article  Google Scholar 

  • DeWachter B, McMahon BR (1996) Haemolymph flow distribution, cardiac performance and ventilation during moderate walking activity in Cancer magister (Dana) (Decapoda, Crustacea). J Exp Biol 199:627–633

    Google Scholar 

  • Diaz RJ, Rosenburg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Dittrich BU (1992) Life under extreme conditions: aspects of evolutionary adaptation to temperature in crustacean proteases. Polar Biol 12:269–274

    Article  Google Scholar 

  • Dye AH, Lasiak TA (1987) Assimilation efficiencies of fiddler crabs and deposit-feeding gastropods from tropical mangrove sediments. Comp Biochem Physiol 87A:341–344

    Article  Google Scholar 

  • Ebara A (1969) Spontaneous activity of crayfish intestine. Annot Zool Jpn 42:169–175

    Google Scholar 

  • Ellis SG, Small LF (1989) Comparison of gut evacuation rate of feeding and non-feeding Calanus marshallae. Mar Biol 103:175–181

    Article  Google Scholar 

  • Factor JR (1995) The digestive system. In: Factor JR (ed) Biology of the Lobster Homarus americanus. Academic Press, San Diego, pp 395–440

    Chapter  Google Scholar 

  • Felgenhauer BE, Abele LG (1983) Phylogenetic relationships among the shrimp-like decapods. In: Schram F (ed) Crustacean Phylogeny. Crustacean Issues 1, pp 291–311

  • Felgenhauer BE, Abele LG (1989) Evolution of the foregut in lower Decapoda. In: Felgenhauer BE, Watling L, Thistle AB (eds) Functional morphology of feeding and grooming in Crustacea. Crustacean Issues 6, pp 205–219

  • Fenucci JL, Fenucci AC, Lawrence AL, Zein-Eldin ZP (1982) The assimilation of protein and carbohydrate from prepared diets by the shrimp, Penaeus stylirostris. Proc World Maricult Soc 13:134–145

    CAS  Google Scholar 

  • Florey E (1961) A new test preparation for bio-assay of factor I and gamma-aminobutyric acid. J Physiol (Lond) 156:1–7

    CAS  Google Scholar 

  • Forster JRM (1972) Some methods of binding prawn diets and their effects on growth and assimilation. J Cons Int Explor Mer 34:200–216

    CAS  Google Scholar 

  • Forster JRM, Gabbott PA (1971) The assimilation of nutrients from compounded diets by the prawns Palaemon serratus and Pandalus platyceros. J Mar Biol Assoc UK 51:943–961

    Article  Google Scholar 

  • Gamperl AK (2011) Integrated responses of the circulatory system to temperature. In: Farrell AP (ed) Encyclopedia of fish physiology. Elsevier, Amsterdam

    Google Scholar 

  • Genodepa J, Southgate PC, Zeng C (2006) Determining ingestion of microbound diet particles by mud crab, Scylla serrata, larvae. J Fish Aquatic Sci 1:244–252

    Article  Google Scholar 

  • Gibson R (1983) Feeding and digestion in decapod crustaceans. In: Pruder G, Langdon CJ, Conklin DE (eds) Proceedings of the 2nd international conference on aquaculture nutrition: Biochemical and physiological approaches to shellfish nutrition. Louisiana State University, Baton Rouge, pp 59–70

    Google Scholar 

  • Gibson R, Barker PL (1979) The Decapod hepatopancreas. Oceanogr Mar Biol Ann Rev 17:285–346

    Google Scholar 

  • Goldstein DL, Pinshow P (2006) Taking physiology to the field: using physiological approaches to answer questions about animals in their environments. Physiol Biochem Zool 79:237–241

    Article  PubMed  Google Scholar 

  • Grans A, Axelsson M, Pitsillides K, Olsson C, Hojesjo J, Kaufman RC, Cech JJ Jr (2009) A fully implantable multi-channel biotelemetry system for measurement of blood flow and temperature: a first evaluation in the green sturgeon. Hydrobiologia 619:11–25

    Article  Google Scholar 

  • Greenaway P, Linton SM (1995) Dietary assimilation and food retention time in the herbivorous terrestrial crab Gecarcoidea natalis. Physiol Zool 68:1006–1028

    Google Scholar 

  • Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest. Physiol Zool 71:36–44

    Article  PubMed  CAS  Google Scholar 

  • Haddon M, Wear RG (1987) Biology of feeding in the New Zealand paddle crab Ovalipes catharus (Crustacea, Portunidae). New Zealand J Mar Fresh Res 21:55–64

    Article  Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (1992) Dynamic biological networks: the stomatogastric nervous system. MIT Press, Cambridge

    Google Scholar 

  • Hartline DK, Maynard DM (1975) Motor patterns in the stomatogastric ganglion of the lobster Panulirus argus. J Exp Biol 62:405–420

    PubMed  CAS  Google Scholar 

  • Hartline DK, Russell DK, Raper JA, Graubard K (1988) Special cellular and synaptic mechanisms in motor pattern generation. Comp Biochem Physiol C 91:115–131

    Article  PubMed  CAS  Google Scholar 

  • Heeren T, Mitchell BD (1997) Morphology of the mouthparts, gastric mill and digestive tract of the giant crab Pseudocarcinus gigas (Milne Edwards) (Decapoda, Oziidae). Mar Freshwater Res 48:7–18

    Article  Google Scholar 

  • Heinzel HG (1988) Gastric mill activity in the lobster. I. Spontaneous modes of chewing. J Neurophysiol 59:528–550

    PubMed  CAS  Google Scholar 

  • Heinzel HG, Weimann JM, Marder E (1993) The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. J Neurosci 13:1793–1803

    PubMed  CAS  Google Scholar 

  • Hermann A, Dando MR (1977) Mechanism of command fibre operation onto bursting pacemaker neurones in the stomatogastric ganglion of the crab, Cancer pagurus. J Comp Physiol 114A:15–33

    Article  Google Scholar 

  • Hewitt DR, Irving MG (1990) Oxygen consumption and ammonia excretion of the brown tiger prawn Penaeus esculentus fed diets of varying protein content. Comp Biochem Physiol 96A:379–381

    Google Scholar 

  • Heyraud M (1979) Food ingestion and digestive transit time in the euphausiid Meganyctiphanes norvegica as a function of animal size. J Plank Res 4:301–311

    Article  Google Scholar 

  • Hill BJ (1976) Natural food, foregut clearance rate and activity of the crab Scylla serrata. Mar Biol 34:109–116

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Holliday CW, Mykles DL, Terwilliger RC, Dangott LJ (1980) Fluid secretion by the midgut caeca of the crab, Cancer magister. Comp Biochem Physiol 67A:259–263

    Article  Google Scholar 

  • Hopkin SP, Nott JA (1980) Studies of the digestive cycle of the shore crab Carcinus maenas with special reference to the B cells in the hepatopancreas. J Mar Biol Assoc UK 60:867–877

    Article  Google Scholar 

  • Houlihan DF, Waring CP, Mathers E, Gray C (1990) Protein synthesis and oxygen consumption of the shore crab Carcinus maenas after a meal. Physiol Zool 63:735–756

    CAS  Google Scholar 

  • Hoyt M, Fleeger JW, Siebeling R, Feller RJ (2000) Serological estimation of prey-protein gut-residence time and quantification of meal size for grass shrimp consuming meiofaunal copepods. J Exp Mar Biol Ecol 248:105–119

    Article  PubMed  Google Scholar 

  • Hunter CH, Rudy PR (1975) Osmotic and ionic regulation in the Dungeness crab, Cancer magister dana. Comp Biochem Physiol 51:439–447

    Article  CAS  Google Scholar 

  • Huxley TH (1880) The crayfish. An introduction to the study of zoology. International Scientific Series No. 28, C. Keagan Paul and Co., London, p 371

  • Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of the invertebrates Vol 10. Decapod Crustacea. Wiley, New York, pp 147–201

    Google Scholar 

  • Jobling M, Arnesen AM, Baardvik BM, Christiansen JS, Jorgensen EH (1995) Monitoring feeding behaviour and food intake: methods and application. Aquacult Nutr 1:131–143

    Article  Google Scholar 

  • Johnston DJ (2007) Feeding, morphology and digestive system of slipper lobsters. In: Lavalli KL and Spanier E (eds) Biology and fisheries of the slipper lobster. CRC Press, Boca Raton, pp 111–132

  • Johnston DJ, Alexander CG (1999) Functional morphology of the mouthparts and alimentary tract of the slipper lobster Thenus orientalis (Decapoda: Scyllaridae). Mar Freshwater Res 50:213–223

    Article  Google Scholar 

  • Johnston D, Freeman J (2005) Dietary preference and digestive enzymes activities as indicators of trophic resource utilization by six species of crab. Biol Bull 208:36–46

    Article  PubMed  CAS  Google Scholar 

  • Johnston DJ, Alexander CG, Yellowlees D (1998) Epithelial cytology and function in the digestive gland of Thenus orientalis (Decapoda: Scyllaridae). J Crust Biol 18:271–278

    Article  Google Scholar 

  • Joll LM (1982) Foregut evacuation of four foods by the western lobster Panulirus cygnus in aquaria. Aus J Mar Freshwater Res 33:939–943

    Article  Google Scholar 

  • Jones HC (1962) The action of l-glutamic acid and of structurally related compounds on the hind gut of the crayfish. J Physiol (Lond) 164:295–300

    CAS  Google Scholar 

  • Jones PL, De Silva SS (1997) Influence of differential movement of the marker chromic oxide and nutrients on digestibility estimations in the Australian freshwater crayfish Cherax destructor. Aquaculture 154:323–336

    Article  CAS  Google Scholar 

  • Jones PL, De Silva SS (1998) Comparison of internal and external markers in digestibility studies involving the Australian freshwater crayfish Cherax destructor Clark (Decapoda, Parastacidae). Aquac Res 29:487–493

    Google Scholar 

  • Jones DA, Kumlu M, LeVay L, Fletcher DJ (1997) The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture 155:285–295

    Article  Google Scholar 

  • Kilman VL, Marder E (1996) Ultrastructure of the stomatogastric ganglion neuropil of the crab, Cancer borealis. J Comp Neurol 374:362–375

    Article  PubMed  CAS  Google Scholar 

  • Kiorboe T, Mohlenberg F, Riisgard HU (1985) In situ feeding rates of planktonic copepods: a comparison of four methods. J Exp Mar Biol Ecol 88:67–81

    Article  Google Scholar 

  • Kumlu M (1999) Feeding and digestion in larval decapod crustaceans. Tr J Biol 23:215–229

    Google Scholar 

  • Kurmaly K, Jones DA, Yule AB (1990) Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar Biol 106:181–190

    Article  Google Scholar 

  • Kwok PW, Lee SY (1995) The growth performances of two mangrove crabs, Chiromanthes bidens and Parasesarma plicata under different leaf litter diets. Hydrobiologia 295:141–148

    Article  Google Scholar 

  • Landry MR, Hassett RP, Fagerness V, Downs J, Lorenzen CJ (1984) Effect of food acclimation on assimilation efficiency of Calanus pacificus. Limnol Oceanogr 29:361–364

    Article  Google Scholar 

  • Lasenby DC, Langford RR (1973) Feeding and assimilation of Mysis relicta. Limnol Oceanogr 18:280–285

    Article  Google Scholar 

  • Leavitt DF (1985) An evaluation of gravimetric and inert marker techniques to measure digestibility in the American lobster. Aquaculture 47:131–142

    Article  Google Scholar 

  • LeVay L, Jones DA, Puello-Cruz AC, Sangha RS, Ngamphongsai C (2001) Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp Biochem Physiol 128A:623–630

    CAS  Google Scholar 

  • Linton SM, Greenaway P (2007) A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. J Comp Physiol B 177:269–286

    Article  PubMed  Google Scholar 

  • Linton SM, Allardyce BA, Hagen W, Wencke P, Saborowski R (2009) Food utilisation and digestive ability of aquatic and semi-terrestrial crayfishes, Cherax destructor and Engaeus sericatus (Astacidae, Parastacidae). J Comp Physiol B 179:493–507

    Article  PubMed  Google Scholar 

  • Logan D, Epifanio C (1978) A laboratory energy balance for the larvae and juveniles of the American lobster Homarus americanus. Mar Biol 47:381–389

    Article  Google Scholar 

  • Lovett DL, Felder DL (1989) Ontogeny of gut morphology in the white shrimp Penaeus setiferus (Decapoda, Penaeidae). J Morphol 201:253–272

    Article  Google Scholar 

  • Lovett DL, Felder DL (1990) Ontogenic changes enzyme distribution and midgut function in developmental stages of Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol Bull 178:144–159

    Article  CAS  Google Scholar 

  • Loya-Javellana GN, Fielder DR, Thorne MJ (1995) Foregut evacuation, return of appetite and gastric fluid secretion in the tropical freshwater crayfish, Cherax quadricarinatus. Aquaculture 134:295–306

    Article  Google Scholar 

  • Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85

    Article  Google Scholar 

  • Mangum CP, Amende LM (1967) Blood osmotic concentration of blue crabs (Callinectes sapidus, Rathbun), found in freshwater. Chesapeake Sci 13:318–320

    Article  Google Scholar 

  • Marder E (1976) Cholinergic motor neurones in the stomatogastric system of the lobster. J Physiol 257:63–86

    PubMed  CAS  Google Scholar 

  • Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Eisen JS (1984) Transmitter identification of pyloric neurons: electrically coupled neurons use different neurotransmitters. J Neurophysiol 51:1345–1361

    PubMed  CAS  Google Scholar 

  • Marder E, Weimann JM (1992) Modulatory control of multiple task processing in the stomatogastric nervous system. Pergamon Press, New York

    Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  PubMed  CAS  Google Scholar 

  • Marte CL (1980) The food and feeding habit of Penaeus monodon Fabricius collected from Makato River, Aklan, Philippines (Decapoda Natantia). Crustaceana 38:225–236

    Article  Google Scholar 

  • Massabuau JC, Meyrand P (1996) Modulation of a neural network by physiological levels of oxygen in lobster stomatogastric ganglion. J Neurosci 16:3950–3959

    PubMed  CAS  Google Scholar 

  • Maynard DM, Dando MR (1974) The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus, and Panulirus argus (Decapoda Crustacea). Philos Trans Roy Soc Lond B 268:161–220

    Article  CAS  Google Scholar 

  • Maynou F, Cartes JE (1998) Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean. Mar Ecol Prog Ser 171:221–231

    Article  Google Scholar 

  • McGaw IJ (2005) Does feeding limit cardiovascular modulation in the Dungeness crab Cancer magister during hypoxia? J Exp Biol 208:83–91

    Article  PubMed  Google Scholar 

  • McGaw IJ (2006) Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis. II Gastric motility and evacuation. J Exp Biol 209:3777–3785

    Article  PubMed  Google Scholar 

  • McGaw IJ (2007a) Gastric processing and evacuation during emersion in the red rock crab Cancer productus. Mar Fresh Behav Physiol 40:117–131

    Article  Google Scholar 

  • McGaw IJ (2007b) The interactive effects of exercise and feeding on oxygen uptake, activity levels and gastric processing in graceful crab, Cancer gracilis. Physiol Biochem Zool 80:335–343

    Article  PubMed  CAS  Google Scholar 

  • McGaw IJ (2008) Gastric processing in the Dungeness crab, Cancer magister, during hypoxia. Comp Biochem Physiol 150A:458–463

    CAS  Google Scholar 

  • McGaw IJ, Reiber CL (2000) Integrated physiological responses during feeding and digestion in the blue crab Callinectes sapidus. J Exp Biol 203:359–368

    PubMed  CAS  Google Scholar 

  • McGaw IJ, Whiteley NM (2012) Effects of acclimation and acute temperature change on specific dynamic action and gastric processing in the green shore crab, Carcinus maenas. J Therm Biol 37:570–578

    Article  Google Scholar 

  • McGaw IJ, Reiber CL, Guadagnoli JA (1999) Behavioral physiology of four crab species in low salinity. Biol Bull 196:163–176

    Article  Google Scholar 

  • McGaw IJ, Curtis DL, Ede JD, Ong KJ, van Breukelen F, Goss GG (2009) Physiological responses of postprandial red rock crabs, Cancer productus, during emersion. Can J Zool 87:1158–1169

    Article  CAS  Google Scholar 

  • Mente E (2003) Nutrition, physiology and metabolism of crustaceans. Science Publishers Inc, Enfield, p 160

    Google Scholar 

  • Mente E, Legeay A, Houlihan DF, Massabuau JC (2003) Influence of oxygen partial pressure on protein synthesis in feeding crabs. Am J Physiol Regul Integr Comp Physiol 284:R500–R510

    PubMed  CAS  Google Scholar 

  • Mercier AJ, Lee J (2002) Differential effects of neuropeptides on circular and longitudinal muscles of the crayfish hindgut. Peptides 23:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Mercier AJ, Lange AB, TeBrugge V, Orchard I (1997) Evidence for proctolin-like and RFamide-like neuropeptides associated with the hindgut of the crayfish Procambarus clarkii. Can J Zool 75:1208–1225

    Article  CAS  Google Scholar 

  • Mitra A, Flynn KJ (2007) Importance of interaction between food quality, quantity and gut transit time on consumer feeding growth and trophic dynamics. Am Nat 169:632–646

    Article  PubMed  Google Scholar 

  • Mocquard F (1883) Recherches anatomiques sur l’estomac des Crustacés Podophtalmaires. Thése Fac Sc Paris 505:315

    Google Scholar 

  • Momin MA, Rangneker PV (1974) Histochemical localization of acid and alkaline phosphatases and glucose-6-phosphatase of the hepatopancreas of the crab, Scylla serrata, (Forskal). J Exp Mar Biol Ecol 14:1–16

    Article  Google Scholar 

  • Mootz CA, Epifanio CE (1974) An energy budget for Menippe mercenaria larvae fed artemia nauplii. Biol Bull 146:44–55

    Article  PubMed  CAS  Google Scholar 

  • Moriarty DJW (1976) Quantitative studies on bacteria and algae in the food of the mullet Mugil cephalus L. and the prawn Metapenaeus bennettae (Racek and Dall). J Exp Mar Biol Ecol 22:131–143

    Article  Google Scholar 

  • Morris J, Maynard DM (1970) Recordings from the stomatogastric system of intact lobsters. Comp Biochem Physiol 33:969–974

    Article  Google Scholar 

  • Murtaugh PA (1984) Variable gut residence time: problems in inferring feeding rate from stomach fullness of a mysid crustacean. Can J Fish Aquat Sci 41:1287–1293

    Article  Google Scholar 

  • Musolf BE, Spitzer N, Antonsen BL, Edwards DH (2009) Serotonergic modulation of crayfish hindgut. Biol Bull 217:50–64

    PubMed  Google Scholar 

  • Mykles DL (1979) Ultrastructure of alimentary epithelia of lobsters, Homarus americanus and H. gammarus, and crab Cancer magister. Zoo-Morphologie 92:201–215

    Google Scholar 

  • Mykles DL, Ghalambor CK, Stillman JH, Tomanek L (2010) Grand challenges in comparative physiology: integration across disciplines and across biological levels of organization. Integ Comp Biol 50:6–16

    Article  Google Scholar 

  • Newman MW, Lutz PL, Snedaker SC (1982) Temperature effects on feed digestion and assimilation efficiency of nutrients by the Malaysian prawn Macrobrachium rosenbergii (de Man). J World Maricul Soc 13:95–103

    Article  Google Scholar 

  • Ngoc-Ho N (1984) The functional anatomy of the foregut of Povcelfunu plutychehs and a comparison with Gulutheu squumifevu and Upogebia deltuuru (Crustacea: Decapoda). J Zool Lond 203:511–535

    Article  Google Scholar 

  • Nordhaus I, Wolff M (2007) Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Mar Biol 151:1665–1681

    Article  Google Scholar 

  • Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Est Coast Shelf Sci 67:239–250

    Article  Google Scholar 

  • Nunes AJP, Parsons GJ (2000) Size-related feeding and gastric evacuation measurements for the Southern brown shrimp Penaeus subtilis. Aquaculture 187:133–151

    Article  Google Scholar 

  • Nunes AJP, Gesteira TCV, Goddard S (1997) Food consumption and assimilation by the Southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil. Aquaculture 149:121–136

    Article  Google Scholar 

  • Pasternak AF (1994) Gut fluorescence in herbivorous copepods: an attempt to justify the method. Hydrobiologia 292(293):241–248

    Article  Google Scholar 

  • Pearson M (1908) Cancer, the edible crab. Liverpool Mar Biol Assoc Memoirs 16:1–217

    Google Scholar 

  • Penry DL, Jumars PA (1986) Chemical reactor analysis and optimal digestion. Bioscience 36:310–315

    Article  CAS  Google Scholar 

  • Penry DL, Jumars PA (1987) Modeling animal guts as chemical reactors. Am Nat 129:69–96

    Article  CAS  Google Scholar 

  • Perissinotto R, Pakhomov EA (1996) Gut evacuation rates and pigment destruction in the Antarctic krill Euphausia superba. Mar Biol 125:47–54

    Article  CAS  Google Scholar 

  • Peterson W, Painting S, Barlow R (1990) Feeding rates of Calanoides carinatus: a comparison of five methods including evaluation of the gut fluorescence method. Mar Eco Prog Ser 63:85–92

    Article  Google Scholar 

  • Powers LW (1973) Gastric mill rhythms in intact crabs. Comp Biochem Physiol 46A:767–783

    Article  Google Scholar 

  • Reymond H, Lagardtre JP (1990) Feeding rhythms and food of Penaeus japonicus Bate (Crustacea, Penaeidae) in salt water ponds: role of halophilic entomofauna. Aquaculture 81:125–143

    Article  Google Scholar 

  • Rezer E, Moulins M (1983) Expression of the crustacean pyloric pattern generator in the intact animal. J Comp Physiol 153:17–28

    Article  Google Scholar 

  • Rezer E, Moulins M (1992) Humoral induction of pyloric rhythmic in lobster stomatogastric ganglion: in vivo and in vitro studies. Biol Bull 163:209–230

    CAS  Google Scholar 

  • Rivera JC, Marder E (1996) TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis. J Comp Physiol A 179:741–751

    Google Scholar 

  • Robertson RF, Meagor J, Taylor EW (2002) Specific dynamic action in the shore crab, Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the emersion response. Physiol Biochem Zool 75:350–359

    Article  PubMed  CAS  Google Scholar 

  • Romero MC, Lovrich GA, Tapella F (2006) Seasonal Changes in dry mass and energetic content of Munida subrugosa (Crustacea Decapoda) in the Beagle Channel, Argentina. J Shell Res 25:101–106

    Article  Google Scholar 

  • Saborowski R (2013) Nutrition and digestion. In: Chang ES, Thiel M (eds) The natural history of Crustaceans, vol 4 (in press)

  • Sarda F, Valladares FJ (1990) Gastric evacuation of different foods by Nephrops norvegicus (Crustacea: Decapoda) and estimation of soft tissue ingested, maximum food intake and cannabalism in captivity. Mar Biol 104:25–30

    Article  Google Scholar 

  • Schwamborn R, Criales MM (2000) Feeding strategy and daily ration of pink shrimp (Farfantepenaeus duorarem) in a south Florida seagrass bed. Mar Biol 137:139–147

    Article  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Selverston AI, Moulins M (1987) The crustacean stomatogastric system. Springer, Berlin

    Book  Google Scholar 

  • Selverston AI, Russell DF, Miller JP, King DG (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol NY 7:215–290

    Article  CAS  Google Scholar 

  • Serrano AE (2012) Changes in gut evacuation time of larval mud crab Scylla serrata (Crustacea: Portunidae) fed on artificial plankton or live food. AACL Bioflux 5:240–248

    Google Scholar 

  • Simon CJ, Jeffs A (2008) Feeding and gut evacuation of cultured juvenile spiny lobsters, Jasus edwardsii. Aquaculture 280:211–219

    Article  Google Scholar 

  • Smith RI (1978) The midgut caeca and the limits of the hindgut of brachyura: a clarification. Crustaceana 35:195–205

    Article  Google Scholar 

  • Smith DM, Tabrett SJ (2004) Accurate measurement of in vivo digestibility in shrimp feeds. Aquaculture 46(232):563–580

    Article  Google Scholar 

  • Smith LL, Lee PG, Lawrence AL, Strawn K (1985) Growth and digestibility by three sizes of Penaeus vannamei Boone: effects of dietary protein level and protein source. Aquaculture 46:85–96

    Article  CAS  Google Scholar 

  • Soares R, Wasielesky W, Peixotob S, D’Incao F (2005) Food consumption and gastric emptying of Farfantepenaeus paulensis. Aquaculture 250:283–290

    Article  Google Scholar 

  • Somero GN (1978) Temperature adaptation of enzymes: biological optimization through structure-function compromises. Ann Rev Ecol Syst 9:1–29

    Article  CAS  Google Scholar 

  • Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A 195:989–1009

    Article  Google Scholar 

  • Stein W, Smarandache CR, Nickmann M, Hedrich UB (2006) Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction. J Exp Biol 209:1285–1300

    Article  PubMed  Google Scholar 

  • Taghon GL (1981) Beyond selection: optimal ingestion rate as a function of food value. Am Nat 118:202–214

    Article  Google Scholar 

  • Talbot C, Higgins PJ (1983) A radiographic method for feeding studies on fish using metallic iron powder as a marker. J Fish Biol 23:211–220

    Article  Google Scholar 

  • Thomas CW, Carter CG, Crear BJ (2002) Potential use of radiography for measuring feed intake of southern rock lobster (Jasus edwardsii). J Exp Mar Biol Ecol 273:289–298

    Article  Google Scholar 

  • Thuma JB, Morris LG, Weaver AL, Hooper SL (2003) Lobster (Panulirus interruptus) pyloric muscles express the motor patterns of three neural networks, only one of which innervates the muscles. J Neurosci 23:8911–8920

    PubMed  CAS  Google Scholar 

  • Tirelli V, Mayzaud P (2005) Relationship between functional response and gut transit time in the calanoid copepod Acartia clausi: role of food quantity and quality. J Plank Res 27:557–568

    Article  Google Scholar 

  • Waddington K (2008) Variation in evacuation rates of different foods skew estimates of diet in the western rock lobster Panulirus cygnus. Mar Fresh Res 59:347–350

    Article  Google Scholar 

  • Wallace RL, Taylor WK (1992) Invertebrate zoology, a laboratory manual, 6th edn. Prentice Hall, Upper Saddle River, p 356

    Google Scholar 

  • Ward LR, Carter CG, Crear BJ, Smith DM (2003) Optimal dietary protein level for juvenile southern rock lobster, Jasus edwardsii, at two lipid levels. Aquaculture 217:483–500

    Article  CAS  Google Scholar 

  • Wassenberg TJ, Hill BJ (1987) Feeding by the sand crab Portunus pelagicus on material discarded from prawn trawlers in Moreton Bay, Australia. Mar Biol 95:387–393

    Article  Google Scholar 

  • Wassenberg TJ, Hill BJ (1993) Diet and feeding behaviour of juvenile and adult banana prawns Penaeus merguiensis in the Gulf of Carpentaria, Australia. Mar Ecol Prog Ser 94:287–295

    Article  Google Scholar 

  • Weimann JM (1992) Multiple task processing in neural networks: numerous central pattern generators in the stomatogastric nervous system of the crab Cancer borealis. PhD Thesis, Brandies University

  • Weimann JM, Marder E (1994) Switching neurons are integral members of multiple oscillatory networks. Curr Biol 4:896–902

    Article  PubMed  CAS  Google Scholar 

  • Weimann JM, Meyrand P, Marder E (1991) Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. J Neurophys 65:111–122

    CAS  Google Scholar 

  • Whiteley NM, Faulkner LS (2005) Temperature influences whole-animal rates of metabolism but not protein synthesis in a temperate intertidal isopod. Physiol Biochem Zool 78:227–238

    Article  PubMed  Google Scholar 

  • Whiteley NM, Robertson RF, Meagor J, El Haj AJ, Taylor EW (2001) Protein synthesis and specific dynamic action in crustaceans: effects of temperature. Comp Biochem Physiol 128A:595–606

    CAS  Google Scholar 

  • Wilcox JR, Jeffries HP (1974) Feeding habits of the sand shrimp Crangon septemspinosa. Biol Bull 146:424–434

    Article  Google Scholar 

  • Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab Birgus latro (Coenobitidae). J Comp Physiol B 174:299–308

    Article  PubMed  CAS  Google Scholar 

  • Williams MJ (1981) Methods for the analysis of natural diet in the portunid crabs (Crustacea: Decapoda: Portunidae). J Exp Mar Biol Ecol 52:103–113

    Article  Google Scholar 

  • Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals, 2nd edn. Blackwell, Malden, p 754

    Google Scholar 

  • Winlow W, Laverack MS (1972a) The control of hindgut motility in the lobster, Homarus gammarus (L.) 1. Analysis of hindgut movements and receptor activity. Mar Behav Physiol 1:1–27

    Article  Google Scholar 

  • Winlow W, Laverack MS (1972b) The control of hindgut motility in the lobster, Homarus gammarus (L.) 2. Motor output. Mar Behav Physiol 1:29–47

    Article  Google Scholar 

  • Winlow W, Laverack MS (1972c) The control of hindgut motility in the lobster Homarus gammarus (L.) 3. Structure of the sixth abdominal ganglion (6 A.G.) and associated ablation and microelectrode studies. Mar Behav Physiol 1:93–121

    Article  Google Scholar 

  • Wolcott DL, Wolcott TG (1984) Food quality and cannibalism in the red land crab, Gecarcinus lateralis. Physiol Zool 57:318–324

    Google Scholar 

  • Wolcott DL, Wolcott TG (1987) Nitrogen limitation in the herbivorous land crab Cardisoma guanhumi. Physiol Zool 60:262–268

    Google Scholar 

  • Wrong AD, Sammahin M, Richardson R, Mercier AJ (2003) Pharmacological properties of l-glutamate receptors associated with the crayfish hindgut. J Comp Physiol A 189:371–378

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Director and staff of the Bamfield Marine Sciences Centre for use of facilities. This work was supported by and NSERC Discovery grant to IJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain J. McGaw.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGaw, I.J., Curtis, D.L. A review of gastric processing in decapod crustaceans. J Comp Physiol B 183, 443–465 (2013). https://doi.org/10.1007/s00360-012-0730-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0730-3

Keywords

Navigation