Skip to main content
Log in

Hibernation patterns of Turkish hamsters: influence of sex and ambient temperature

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Turkish hamsters (Mesocricetus brandti) are a model organism for studies of hibernation, yet a detailed account of their torpor characteristics has not been undertaken. This study employed continuous telemetric monitoring of body temperature (T b) in hibernating male and female Turkish hamsters at ambient temperatures (T as) of 5 and 13 °C to precisely characterize torpor bout depth, duration, and frequency, as well as rates of entry into and arousal from torpor. Hamsters generated brief intervals of short (<12 h), shallow test bouts (T b > 20 °C), followed by deep torpor bouts lasting 4–6 days at T a = 5 °C and 2–3 days at T a = 13 °C. Females at T a = 5 °C had longer bouts than males, but maintained higher torpor T b; there were no sex differences at T a = 13 °C. Neither body mass loss nor food intake differed between the two T as. Hamsters entered torpor primarily during the scotophase (subjective night), but timing of arousals was highly variable. Hamsters at both T as generated short, shallow torpor bouts between deep bouts, suggesting that this species may be capable of both hibernation and daily torpor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

T b :

Body temperature

T a :

Ambient temperature

IBI:

Interbout interval

References

  • Angilletta MJ, Cooper BS, Schuler MS, Boyles JG (2010) The evolution of thermal physiology in endotherms. Front Biosci E2:861–881

    Article  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79:1885–1890

    Article  Google Scholar 

  • Barnes BM, Kretzmann M, Licht P, Zucker I (1986) The influence of hibernation on testis growth and spermatogenesis in the golden-mantled ground squirrel, Spermophilus lateralis. Biol Reprod 35:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew GA, Hudson JW (1960) Aestivation in the Mohave ground squirrel Citellus mohavensis. Bull Mus Comp Zool 124:193–208

    Google Scholar 

  • Bartness TJ, Milner R, Geloen A, Trayhurn P (1991) Effects of high fat diets on hibernation and adipose tissue in Turkish hamsters. J Comp Physiol B 161:451–459

    Article  PubMed  CAS  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:255–262

    Google Scholar 

  • Butler MP, Turner KW, Zucker I (2008) A melatonin-independent seasonal timer induces neuroendocrine refractoriness to short day lengths. J Biol Rhythms 23:242–251

    Article  PubMed  CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Carter DS, Hall VD, Tamarkin L, Goldman BD (1982) Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology 111:863–871

    Article  PubMed  CAS  Google Scholar 

  • Darrow JM, Tamarkin L, Duncan MJ, Goldman BD (1986) Pineal melatonin rhythms in female Turkish hamsters: effects of photoperiod and hibernation. Biol Reprod 35:74–83

    Article  PubMed  CAS  Google Scholar 

  • French AR (1988) The patterns of mammalian hibernation. Am Sci 76:569–575

    Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Baudinette RV (1990) The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J Exp Biol 151:349–359

    PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1988) Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol Zool 61:442–449

    Google Scholar 

  • Geiser F, Mzilikazi N (2011) Does torpor of elephant shrews differ from that of other heterothermic mammals? J Mammal 92:452–459

    Article  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Goldman BD (1989) Effects of photoperiod on the hibernation cycle of the Turkish hamster. In: Malan A, Canguilhem B (eds) Living in the cold: 2nd International Symposium. John Libbey Eurotext, London, pp 5–15

    Google Scholar 

  • Goldman BD, Darrow JM (1987) Effects of photoperiod on hibernation in castrated Turkish hamsters. Am J Physiol 253:R337–R343

    PubMed  CAS  Google Scholar 

  • Goldman BD, Darrow JM, Duncan MJ, Yogev L (1986) Photoperiod, reproductive hormones, and winter torpor in three hamster species. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York, pp 341–350

    Google Scholar 

  • Hall V, Goldman B (1980) Effects of gonadal steroid hormones on hibernation in the Turkish hamster (Mesocricetus brandti). J Comp Physiol 135:107–114

    CAS  Google Scholar 

  • Hall V, Goldman B (1982) Hibernation in the female Turkish hamster (Mesocricetus brandti): an investigation of the role of the ovaries and of photoperiod. Biol Reprod 27:811–815

    Article  PubMed  CAS  Google Scholar 

  • Hall VD, Bartke A, Goldman BD (1982) Role of the testis in regulating the duration of hibernation in the Turkish hamster, Mesocricetus brandti. Biol Reprod 27:802–810

    Article  PubMed  CAS  Google Scholar 

  • Hammel HT (1986) Is heat production during arousal enhanced by a positive feedback? In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York, pp 201–205

    Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Hong SM, Rollag MD, Stetson MH (1986) Maintenance of testicular function in Turkish hamsters: interaction of photoperiod and the pineal gland. Biol Reprod 34:527–531

    Article  PubMed  CAS  Google Scholar 

  • Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313–316

    Article  PubMed  CAS  Google Scholar 

  • Humphries MM, Kramer DL, Thomas DW (2003) The role of energy availability in mammalian hibernation: an experimental test in free-ranging eastern chipmunks. Physiol Biochem Zool 76:180–186

    Article  PubMed  Google Scholar 

  • Jarjisian SG, Zucker I (2011) Elimination of short-day melatonin signaling accelerates gonadal recrudescence but does not break refractoriness in male Turkish hamsters. J Biol Rhythms 26:130–135

    Article  PubMed  Google Scholar 

  • Kauffman AS, Cabrera A, Zucker I (2001) Torpor characteristics and energy requirements of furless Siberian hamsters. Physiol Biochem Zool 74:876–884

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–128

    Article  PubMed  Google Scholar 

  • Lee TN, Barnes BM, Buck CL (2009) Body temperature patterns during hibernation in a free-living Alaska marmot (Marmota broweri). Ethol Ecol Evol 21:403–413

    Article  Google Scholar 

  • Lovegrove BG (2011) The evolution of endothermy in Cenozoic mammals: a plesiomorphic–apomorphic continuum. Biol Rev 87:128–162

    Article  PubMed  Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001) Daily torpor in elephant shrews (Macroscelidea: Elephantulus spp.) in response to food deprivation. J Comp Physiol B 171:11–21

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, O’Brien RC (1977) A laboratory study of the Turkish hamster (Mesocricetus brandti). Breviora, vol 442. Museum of Comparative Zoology, Harvard University, pp 1–27

  • Lyman CP, O’Brien RC, Greene GC, Papafrangos ED (1981) Hibernation and longevity in the Turkish hamster Mesocricetus brandi. Science 212:668–670

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Lyman CP, O’Brien RC, Bossert WH (1983) Differences in tendency to hibernate among groups of Turkish hamsters (Mesocricetus brandti). J Therm Biol 8:255–257

    Article  Google Scholar 

  • Masson-Pévet M, Pévet P, Vivien-Roels B (1987) Pinealectomy and constant release of melatonin or 5-methoxytryptamine induce testicular atrophy in the European hamster (Cricetus cricetus, L.). J Pineal Res 4:79–88

    Article  PubMed  Google Scholar 

  • Oklejewicz M, Daan S, Strijkstra AM (2001) Temporal organization of hibernation in wild-type and tau mutant Syrian hamsters. J Comp Physiol B 171:431–439

    Article  PubMed  CAS  Google Scholar 

  • Oxberry BA (1979) Female reproductive patterns in hibernating bats. J Reprod Fert 56:359–367

    Article  CAS  Google Scholar 

  • Ruby NF (2003) When good clocks go cold. J Biol Rhythms 18:275–286

    Article  PubMed  Google Scholar 

  • Ruby NF, Dark J, Bruns DE, Heller HC, Zucker I (2002) The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J Neurosci 22:357–364

    PubMed  CAS  Google Scholar 

  • Stetson MH, Hamilton B (1981) The anovulatory hamster: a comparison of the effects of short photoperiod and daily melatonin injections on the induction and termination of ovarian acyclicity. J Exp Zool 215:173–178

    Article  PubMed  CAS  Google Scholar 

  • Strumwasser F (1959) Factors in the pattern, timing and predictability of hibernation in the squirrel, Citellus beecheyi. Am J Physiol 196:8–14

    PubMed  CAS  Google Scholar 

  • Toussaint DC, McKechnie AE, van der Merwe M (2010) Heterothermy in free-ranging male Egyptian free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mamm Biol 75:466–470

    Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc R Soc B 278:3355–3363

    Google Scholar 

  • Turbill C, Smith S, Deimel C, Ruf T (2012) Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol Lett 8:304–307

    Google Scholar 

  • Twente JW, Twente JA (1965) Regulation of hibernating periods by temperature. Proc Natl Acad Sci USA 54:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Vander Wall SB (1990) Food hoarding in mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Wang LCH (1978) Energetic and field aspect of mammalian torpor: the Richardson’s ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in the cold. Academic Press, New York, pp 109–145

    Chapter  Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J Comp Physiol B 170:511–521

    Article  PubMed  CAS  Google Scholar 

  • Yigit N, Erten D, Gül N (2008) Hibernation pattern and importance of superoxide dismutase for the Turkish hamster, Mesocricetus brandti (Mammalia: Rodentia). Turk J Zool 32:421–425

    Google Scholar 

Download references

Acknowledgments

Thanks to Steve Jarjisian, Lance Kriegsfeld, Kim Pelz, and Chris Tuthill for technical assistance, Karen Molina and Michael Li for help with animal care, and Eileen Lacey and three anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariska Batavia.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batavia, M., Nguyen, G., Harman, K. et al. Hibernation patterns of Turkish hamsters: influence of sex and ambient temperature. J Comp Physiol B 183, 269–277 (2013). https://doi.org/10.1007/s00360-012-0706-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0706-3

Keywords

Navigation