Skip to main content

Polar Bear Behavior: Morphologic and Physiologic Adaptations

  • Chapter
  • First Online:
Ethology and Behavioral Ecology of Sea Otters and Polar Bears

Part of the book series: Ethology and Behavioral Ecology of Marine Mammals ((EBEMM))

  • 3377 Accesses

Abstract

Polar bears possess morphologic and physiologic characteristics that reflect their terrestrial lineage as members of the bear family (Ursidae) as well as adaptations to the Arctic marine environment. Among marine mammals, they are the least adapted for aquatic life. They exhibit substantial seasonality in body mass, body condition, and many physiological functions, reflecting the annual cycle of both their Arctic sea ice habitat and the availability of their main prey, ringed seals. This hypercarnivorous diet has likely influenced the polar bear’s craniodental morphology and nutritional physiology. Similar to other marine mammal predators, polar bears exhibit a relatively high resting metabolic rate (RMR) and field metabolic rate (FMR). The polar bear skeleton is well adapted for walking, rather than tree-climbing, and to a lesser degree, for swimming. The large feet provide secure traction on sea ice (aided by sharp claws) and propulsion in the water. Their reproduction, winter hibernation (by pregnant females), and sensory systems resemble those of other bears. Future research should focus on nutrient recycling during fasting, adaptation to a high-fat diet, susceptibility to pathogens, and assessment of the fitness consequences of ongoing sea ice loss and chemical contamination of their habitat .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aars J, Plumb A (2010) Polar bear cubs may reduce chilling from icy water by sitting on mother’s back. Polar Biol 33:557–559

    Article  Google Scholar 

  • Amstrup SC (2003) Polar bear. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation, 2nd edn. The Johns Hopkins University Press, pp 587–610

    Google Scholar 

  • Arinell K, Sahdo B, Evans AL, Arnemo JM, Baandrup U, Frobert O (2012) Brown bears (Ursus arctos) seem resistant to atherosclerosis–despite highly elevated plasma lipids during hibernation and active state. Clin Transl Sci 5:269–272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnould JPY, Ramsay MA (1994) Milk production and milk consumption in polar bears during the ice-free period in western Hudson Bay. Can J Zool 72:1365–1370

    Article  Google Scholar 

  • Atkinson SN, Ramsay MA (1995) The effects of prolonged fasting of the body composition and reproductive success of female polar bears (Ursus maritimus). Funct Ecol 9:559–567

    Article  Google Scholar 

  • Atkinson SN, Nelson RA, Ramsay MA (1996) Changes in the body composition of fasting polar bears (Ursus maritimus): the effect of relative fatness on protein conservation. Physiol Zool 69:304–316

    Article  CAS  Google Scholar 

  • Atwood TC, Marcot BG, Douglas DC, Amstrup SC, Rode KD, Durner GM, Bromaghin JF (2016) Forecasting the relative influence of environmental and anthropogenic stressors on polar bears. Ecosphere 7:e01370

    Article  Google Scholar 

  • Atwood TC, Duncan C, Patyk KA, Nol P, Rhyan J, McCollum M, McKinney MA, Ramey AM, Cerqueira-Cézar CK, Kwok OCH, Dubey JP, Hennager S (2017) Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Sci Rep 7:13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballantyne FC, Smith J, Fleck A (1973) Albumin metabolism in fasting, obese subjects. Br J Nutr 30:585–592

    Article  CAS  PubMed  Google Scholar 

  • Barboza PS, Farley SD, Robbins CT (1997) Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanus and U. arctos). Can J Zool 75:2129–2136

    Article  Google Scholar 

  • Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R (2009) Is dietary mercury of neurotoxicological concern to wild polar bears (Ursus maritimus)? Environ Toxicol Chem 28:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bechshøft TØ, Jakobsen J, Sonne C, Dietz R (2011a) Distribution of vitamins A (retinol) and E (α-tocopherol) in polar bear kidney: implications for biomarker studies. Sci Total Environ 409:3508–3511

    Article  PubMed  CAS  Google Scholar 

  • Bechshøft TØ, Sonne C, Dietz R, Born EW, Novak MA, Henchey E, Meyer JS (2011b) Cortisol levels in hair of East Greenland polar bears. Sci Total Environ 409:831–834

    Article  PubMed  CAS  Google Scholar 

  • Bechshøft TØ, Sonne C, Rigét FF, Letcher RJ, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Covaci A, Dietz R (2013) Polar bear stress hormone cortisol fluctuates with the North Atlantic Oscillation climate index. Polar Biol 36:1525–1529

    Article  Google Scholar 

  • Bentzen TW, Muir DCG, Amstrup SC, O’Hara TM (2008) Organohalogen concentrations in blood and adipose tissue of Southern Beaufort Sea polar bears. Sci Total Environ 406:352–367

    Article  CAS  PubMed  Google Scholar 

  • Bernhoft A, Skaare JU, Wiig Ø, Derocher AE, Larsen HJS (2000) Possible immunotoxic effects of organochlorines in polar bears (Ursus maritimus) at Svalbard. J Toxicol Environ Health A 59:561–574

    Article  CAS  PubMed  Google Scholar 

  • Best RC (1982) Thermoregulation in resting and active polar bears. J Comp Physiol B 146:63–73

    Article  Google Scholar 

  • Best RC (1985) Digestibility of ringed seals by the polar bear. Can J Zool 63:1033–1036

    Article  Google Scholar 

  • Best RC, Ronald K, Øritsland NA (1981) Physiological indices of activity and metabolism in the polar bear. Comp Biochem Physiol 69:177–185

    Article  Google Scholar 

  • Bourne DC, Cracknell JM, Bacon HJ (2010) Veterinary issues related to bears (Ursidae). Int Zoo Yearb 44:16–32

    Article  Google Scholar 

  • Bowen L, Keith Miles A, Stott J, Waters S, Atwood TC (2015) Enhanced biological processes associated with alopecia in polar bears (Ursus maritimus). Sci Total Environ 529:114–120

    Article  CAS  PubMed  Google Scholar 

  • Calvert W, Ramsay MA (1998) Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10:449–453

    Google Scholar 

  • Cardona-Marek T, Knott KK, Meyer BE, O’Hara TM (2009) Mercury concentrations in Southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and nitrogen. Environ Toxicol Chem 28:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Cattet MRL, Atkinson SN, Polischuk SC, Ramsay MA (1997) Predicting body mass in polar bears: is morphometry useful? J Wildl Manag 61:1083–1090

    Article  Google Scholar 

  • Cattet MRL, Caulkett NA, Obbard ME, Stenhouse GB (2002) A body-condition index for ursids. Can J Zool 80:1156–1161

    Article  Google Scholar 

  • Cattet MRL, Duignan PJ, House CA, Aubin DJS (2004) Antibodies to canine distemper and phocine distemper viruses in polar bears from the Canadian Arctic. J Wildl Dis 40:338–342

    Article  PubMed  Google Scholar 

  • Cherry SG, Derocher AE, Stirling I, Richardson ES (2009) Fasting physiology of polar bears in relation to environmental change and breeding behavior in the Beaufort Sea. Polar Biol 32:383–391

    Article  Google Scholar 

  • Christiansen P (2007) Evolutionary implications of bite mechanics and feeding ecology in bears. J Zool 272:423–443

    Article  Google Scholar 

  • Christiansen P (2008) Feeding ecology and morphology of the upper canines in bears (Carnivora: Ursidae). J Morphol 269:896–908

    Article  PubMed  Google Scholar 

  • Cleeman JI, Grundy SM, Becker D, Clark LT, Cooper RS, Denke MA, Howard WJ, Hunninghake DB, Illingworth DR, Luepker RV, McBride P, McKenney JM, Pasternak RC, Stone NJ, Van Horn L, Brewer HB, Ernst ND, Gordon D, Levy D, Rifkind B, Rossouw JE, Savage P, Haffner SM, Orloff DG, Proschan MA, Schwartz JS, Sempos CT, Shero ST, Murray EZ (2001) Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J Am Med Assoc 285:2486–2497

    Article  Google Scholar 

  • Crissey SD, Ange KD, Slifka KA, Sadler W, Kahn S, Ward AM (2004) Serum lipid concentrations in six canid and four ursid species in four zoos. J Zoo Wildl Med 35:34–39

    Article  PubMed  Google Scholar 

  • Davis RW (2019) Marine mammals: adaptations for an aquatic life. Springer, Cham, p 302

    Book  Google Scholar 

  • Derocher AE, Stirling I (1995) Temporal variation in reproduction and body mass of polar bears in western Hudson Bay. Can J Zool 73:1657–1665

    Article  Google Scholar 

  • Derocher AE, Stirling I (1998) Geographic variation in growth of polar bears (Ursus maritimus). J Zool 245:65–72

    Article  Google Scholar 

  • Derocher AE, Wiig Ø (2002) Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J Zool 256:343–349

    Article  Google Scholar 

  • Derocher AE, Nelson RA, Stirling I, Ramsay MA (1990) Effects of fasting and feeding on serum urea and serum creatinine levels in polar bears. Mar Mamm Sci 6:196–203

    Article  Google Scholar 

  • Derocher AE, Wolkers H, Colborn T, Schlabach M, Larsen TS, Wiig Ø (2003) Contaminants in Svalbard polar bear samples archived since 1967 and possible population level effects. Sci Total Environ 301:163–174

    Article  CAS  PubMed  Google Scholar 

  • Derocher AE, Andersen M, Wiig Ø (2005) Sexual dimorphism of polar bears. J Mammal 86:895–901

    Article  Google Scholar 

  • Desforges J-PW, Sonne C, Levin M, Siebert U, De Guise S, Dietz R (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139

    Article  CAS  PubMed  Google Scholar 

  • Dietz R, Gustavson K, Sonne C, Desforges J-PW, Rigét FF, Pavlova V, McKinney MA, Letcher RJ (2015) Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic. Environ Res 140:45–55

    Article  CAS  PubMed  Google Scholar 

  • Dietz R, Desforges J-PW, Gustavson K, Rigét FF, Born EW, Letcher RJ, Sonne C (2018) Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013. Environ Int 118:169–178

    Article  CAS  PubMed  Google Scholar 

  • Durner GM, Amstrup SC (1996) Mass and body-dimension relationships of polar bears in northern Alaska. Wildl Soc Bull 24:480–484

    Google Scholar 

  • Durner GM, Whiteman JP, Harlow HJ, Amstrup SC, Regehr EV, Ben-David M (2011) Consequences of long-distance swimming and travel over deep-water pack ice for a female polar bear during a year of extreme sea ice retreat. Pol Biol 34:975–984

    Article  Google Scholar 

  • Dyck MG, Kebreab E (2009) Estimating the energetic contribution of polar bear (Ursus maritimus) summer diets to the total energy budget. J Mammal 90:585–593

    Article  Google Scholar 

  • Dyck MG, Morin P (2011) In vivo digestibility trials of a captive polar bear (Ursus maritimus) feeding on harp seal (Pagophilus groenlandicus) and Arctic charr (Salvelinus alpinus). Pak J Zool 43:759–767

    CAS  Google Scholar 

  • Dyck MG, Soon W, Baydack RK, Legates DR, Baliunas S, Ball TF, Hancock LO (2007) Polar bears of western Hudson Bay and climate change: are warming spring air temperatures the “ultimate” survival control factor? Ecol Complex 4:73–84

    Article  Google Scholar 

  • Fagre AC, Patyk KA, Nol P, Atwood TC, Hueffer K, Duncan C (2015) A review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance. EcoHealth 12:528–539

    Article  PubMed  Google Scholar 

  • Ferguson SH, Taylor MK, Rosing-Asvid A, Born EW, Messier F (2000) Relationships between denning of polar bears and conditions of sea ice. J Mammal 81:1118–1127

    Article  Google Scholar 

  • Figueirido B, Palmqvist P, Perez-Claros JA (2009) Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. J Zool 277:70–80

    Article  Google Scholar 

  • Fish FE, Stein BR (1991) Functional correlates of differences in bone-density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology 110:339–345

    Article  Google Scholar 

  • Folk GE, Cooper PS, Folk MA (1994) A method for comparing polar bears eating nearly 100% fat with fasted bears. Int Conf Bear Res Manag 9:459–460

    Google Scholar 

  • Frank N, Elliott SB, Allin SB, Ramsay EC (2006) Blood lipid concentrations and lipoprotein patterns in captive and wild American black bears (Ursus americanus). Am J Vet Res 67:335–341

    Article  CAS  PubMed  Google Scholar 

  • Friebe A, Evans AL, Arnemo JM, Blanc S, Brunberg S, Fleissner G, Swenson JE, Zedrosser A (2014) Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS One 9:e101410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frisch J, Oritsland N, Krog J (1974) Insulation of furs in water. Comp Biochem Physiol 47:403–410

    Article  CAS  Google Scholar 

  • Gabrielsen KM, Krokstad JS, Villanger GD, Blair DAD, Obregon M-J, Sonne C, Dietz R, Letcher RJ, Jenssen BM (2015) Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus). Environ Res 136:413–423

    Article  CAS  PubMed  Google Scholar 

  • Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants 6:1–33

    Article  CAS  Google Scholar 

  • Galicia MP, Thiemann GW, Dyck MG (2019) Correlates of seasonal change in the body condition of an Arctic top predator. Glob Change Biol 26:840–850

    Article  Google Scholar 

  • Gardi J, Nelson OL, Robbins CT, Szentirmai E, Kapas L, Krueger JM (2011) Energy homeostasis regulatory peptides in hibernating grizzly bears. Gen Comp Endocrinol 172:181–183

    Article  CAS  PubMed  Google Scholar 

  • Garner GW, Evermann JF, Saliki JT, Follmann EH, McKeirnan AJ (2000) Morbillivirus ecology in polar bears (Ursus maritimus). Polar Biol 23:474–478

    Article  Google Scholar 

  • Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, Aars J, Sundset MA (2010) Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol 10:1–10

    Article  CAS  Google Scholar 

  • Grahl-Nielsen O, Andersen M, Derocher AE, Lydersen C, Wiig Ø, Kovacs KM (2003) Fatty acid composition of the adipose tissue of polar bears and of their prey: ringed seals, bearded seals and harp seals. Mar Ecol Prog Ser 265:275–282

    Article  CAS  Google Scholar 

  • Green PA, Valkenburgh B, Pang B, Bird D, Rowe T, Curtis A (2012) Respiratory and olfactory turbinal size in canid and arctoid carnivorans. J Anat 221:609–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffen BD (2018) Modeling the metabolic costs of swimming in polar bears (Ursus maritimus). Polar Biol 41:491–503

    Article  Google Scholar 

  • Gustavson L, Ciesielski TM, Bytingsvik J, Styrishave B, Hansen M, Lie E, Aars J, Jenssen BM (2015a) Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus). Environ Res 138:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gustavson L, Jenssen BM, Bytingsvik J, Styrishave B, Hansen M, Aars J, Eggen GS, Ciesielski TM (2015b) Steroid hormone profile in female polar bears (Ursus maritimus). Polar Biol 38:1183–1194

    Article  Google Scholar 

  • Haave M, Ropstad E, Derocher AE, Lie E, Dahl E, Wiig O, Skaare JU, Jenssen BM (2003) Polychlorinated biphenyls and reproductive hormones in female polar bears at Svalbard. Environ Health Perspect 111:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habold C, Foltzer-Jourdainne C, Maho YL, Lignot J-H, Oudart H (2005) Intestinal gluconeogenesis and glucose transport according to body fuel availability in rats. J Physiol 566:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hailer F, Kutschera VE, Hallström BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A (2012) Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336:344–347

    Article  CAS  PubMed  Google Scholar 

  • Handrich Y, Bevan RM, Charrassin JB, Butler PJ, Putz K, Woakes AJ, Lage J, LeMaho Y (1997) Hypothermia in foraging king penguins. Nature 388:64–67

    Article  CAS  Google Scholar 

  • Harlow HJ, Beck TDI, Walters LM, Greenhouse SS (1990) Seasonal serum glucose, progesterone, and cortisol levels of black bears (Ursus americanus). Can J Zool 68:183–187

    Article  CAS  Google Scholar 

  • Hart JS (1956) Seasonal change in insulation of the fur. Can J Zool 34:53–57

    Article  Google Scholar 

  • Harwood LA, Stirling I (1992) Distribution of ringed seals in the southeastern Beaufort Sea during late summer. Can J Zool 70:891–900

    Article  Google Scholar 

  • Harwood LA, Smith TG, Auld JC (2012) Fall migration of ringed seals (Phoca hispida) through the Beaufort and Chukchi Seas, 2001-02. Arctic 65:35–44

    Article  Google Scholar 

  • Herminghuysen D, Vaughan M, Pace RM, Bagby G, Cook CB (1995) Measurement and seasonal variations of black bear adipose lipoprotein lipase activity. Physiol Behav 57:271–275

    Article  CAS  PubMed  Google Scholar 

  • Hilderbrand GV, Schwartz CC, Robbins CT, Jacoby ME, Hanley TA, Arthur SM, Servheen C (1999) The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can J Zool 77:132–138

    Article  Google Scholar 

  • Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J (1994) Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp Biochem Physiol 109:781–791

    Article  CAS  Google Scholar 

  • Horton TW, Blum JD, Xie Z, Hren M, Chamberlain CP (2009) Stable isotope food-web analysis and mercury biomagnification in polar bears (Ursus maritimus). Polar Res 28:443–454

    Article  Google Scholar 

  • Hurst RJ (1981) Thermal and energetic consequences of oil contamination in polar bears. University of Ottawa, Ottawa, ON

    Google Scholar 

  • Hurst RJ, Øritsland NA, Watts PD (1982) Body mass, temperature and cost of walking in polar bears. Acta Physiol Scand 115:391–395

    Article  CAS  PubMed  Google Scholar 

  • Ingolfsson Ó, Wiig Ø (2009) Late Pleistocene fossil find in Svalbard: the oldest remains of a polar bear (Ursus maritimus Phipps, 1744) ever discovered. Polar Res 28:455–462

    Article  Google Scholar 

  • Iqbal J, Hussain MM (2009) Intestinal lipid absorption. Am J Physiol Endocrinol Metab 296:E1183–E1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen WL, Bos J, Kroeze EJBV, Wellen A, Beynen AC (2003) Apparent digestibility of macro-nutrients in captive polar bears (Ursus maritimus). Zool Gart 73:111–115

    Google Scholar 

  • Kaduce TL, Folk GEF (2002) The essential fatty acids and the diet of polar bears. Pak J Nutr 1:73–78

    Article  Google Scholar 

  • Kaduce TL, Spector AA, Folk GE (1981) Characterization of the plasma lipids and lipoproteins of the polar bear. Comp Biochem Physiol–Part B Biochem Mol Biol 69:541–545

    Article  Google Scholar 

  • Kirk CM, Amstrup S, Swor R, Holcomb D, O’Hara TM (2010a) Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel. EcoHealth 7:307–320

    Article  PubMed  Google Scholar 

  • Kirk CM, Amstrup S, Swor R, Holcomb D, O’Hara TM (2010b) Morbillivirus and Toxoplasma exposure and association with hematological parameters for Southern Beaufort Sea polar bears: potential response to infectious agents in a sentinel species. EcoHealth 7:321–331

    Article  PubMed  Google Scholar 

  • Kojima M, Kangawa K (2010) Ghrelin: from gene to physiological function. Results Probl Cell Differ 50:185–205

    CAS  PubMed  Google Scholar 

  • Kolenosky G (1987) Polar bear. In: Novak MA (ed) Wild furbearer management and conservation in North America. Ontario Fur Trappers Association, North Bay, ON, pp 475–485

    Google Scholar 

  • Koon DW (1998) Is polar bear hair fiber optic? Appl Opt 37:3198–3200

    Article  CAS  PubMed  Google Scholar 

  • Kooyman GL, Davis RW, Castellini MA (1977) Thermal conductance of immersed pinniped and sea otter pelts before and after oiling with Prudhoe Bay crude. In: Wolfe DA (ed) Fate and effects of the petroleum hydrocarbons in marine organisms and ecosystems. Pergammon Press, New York, pp 151–156

    Chapter  Google Scholar 

  • LeBlanc PJ, Obbard M, Battersby BJ, Felskie AK, Brown L, Wright PA, Ballantyne JS (2001) Correlations of plasma lipid metabolites with hibernation and lactation in wild black bears Ursus americanus. J Comp Physiol B 171:327–334

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Ronald K, Øritsland NA (1977) Some blood values of wild polar bears. J Wildl Manag 41:520–526

    Article  CAS  Google Scholar 

  • Lennox AR, Goodship AE (2008) Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation. Comp Biochem Physiol–Mol Integr Physiol 149:203–208

    Article  CAS  Google Scholar 

  • Letcher RJ, Morris AD, Dyck M, Sverko E, Reiner EJ, Blair DAD, Chu SG, Shen L (2018) Legacy and new halogenated persistent organic pollutants in polar bears from a contamination hotspot in the Arctic, Hudson Bay Canada. Sci Total Environ 610–611:121–136

    Article  PubMed  CAS  Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–843

    Article  CAS  Google Scholar 

  • Lewis RW, Lentfer JW (1967) The vitamin A content of polar bear liver: range and variability. Comp Biochem Physiol 22:923–926

    Article  CAS  Google Scholar 

  • Lie E, Jørgen S, Larsen H, Larsen S, Marie Johansen G, Derocher AE, Lunn NJ, Norstrom RJ, Wiig Ø, Utne Skaare J (2004) Does high organochlorine (OC) exposure impair the resistance to infection in polar bears (Ursus maritimus)? Part I: effect of OCs on the humoral immunity. J Toxicol Environ Health A 67:555–582

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan CC, Doherty A, O’Connell MJ, McInerney JO, Born EW, Dalén L, Dietz R, Orlando L, Sonne C, Zhang G, Nielsen R, Willerslev E, Wang J (2014) Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liwanag HEM, Berta A, Costa DP, Abney M, Williams TM (2012a) Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biol J Linn Soc 106:926–939

    Article  Google Scholar 

  • Liwanag HEM, Berta A, Costa DP, Budge SM, Williams TM (2012b) Morphological and thermal properties of mammalian insulation: the evolutionary transition to blubber in pinnipeds. Biol J Linn Soc 107:774–787

    Article  Google Scholar 

  • Lohuis TD, Beck TDI, Harlow HJ (2005) Hibernating black bears have blood chemistry and plasma amino acid profiles that are indicative of long-term adaptive fasting. Can J Zool 83:1257–1263

    Article  CAS  Google Scholar 

  • Lone K, Kovacs KM, Lydersen C, Fedak M, Andersen M, Lovell P, Aars J (2018) Aquatic behaviour of polar bears (Ursus maritimus) in an increasingly ice-free Arctic. Sci Rep 8:9677–9689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macbeth BJ, Cattet MRL, Obbard ME, Middel K, Janz DM (2012) Evaluation of hair cortisol concentration as a biomarker of long-term stress in free-ranging polar bears. Wildl Soc Bull 36:747–758

    Article  Google Scholar 

  • Makita T, Koriyama N, Namba T, Okubo J, Endo H, Kagawa K (1998) Gross anatomy of the lobated kidney of a male polar bear (Thalarctos maritimus). Jpn J Zoo Wildl Med 3:79–82

    Article  Google Scholar 

  • Malenfant RM, Davis CS, Cullingham CI, Coltman DW (2016) Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS One 11:e0148967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manning D, Cooper J, Stirling I, Jones C, Bruce M, Mccausland P (1985) Studies on the footpads of the polar bear (Ursus maritimus) and their possible relevance to accident prevention. J Hand Surg Br Eur 10:303–307

    Article  CAS  Google Scholar 

  • McGee-Lawrence ME, Carey HV, Donahue SW (2008) Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol-Regul Integr Comp Physiol 295:R1999–R2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney MA, Peacock E, Letcher RJ (2009) Sea ice-associated diet change increases the levels of chlorinated and brominated contaminants in polar bears. Environ Sci Technol 43:4334–4339

    Article  CAS  PubMed  Google Scholar 

  • McKinney MA, Stirling I, Lunn NJ, Peacock E, Letcher RJ (2010) The role of diet on long-term concentration and pattern trends of brominated and chlorinated contaminants in western Hudson Bay polar bears, 1991–2007. Sci Total Environ 408:6210–6222

    Article  CAS  PubMed  Google Scholar 

  • McKinney MA, Atwood T, Dietz R, Sonne C, Iverson SJ, Peacock E (2014) Validation of adipose lipid content as a body condition index for polar bears. Ecol Evol 4:516–527

    Article  PubMed  PubMed Central  Google Scholar 

  • McNab BK (1988) Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol 63:25–54

    Article  CAS  PubMed  Google Scholar 

  • Messier F, Taylor MK, Ramsay MA (1994) Denning ecology of polar bears in the Canadian Arctic Archipelago. J Mammal 75:420–430

    Article  Google Scholar 

  • Molnár PK, Klanjscek T, Derocher AE, Obbard ME, Lewis MA (2009) A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears. J Exp Biol 212:2313–2323

    Article  PubMed  Google Scholar 

  • Muñoz-Garcia A, Williams JB (2005) Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiol Biochem Zool 78:1039–1056

    Article  PubMed  Google Scholar 

  • Nelson RA, Wahner HW, Jones JD, Ellefson RD, Zollman PE (1973) Metabolism of bears before, during, and after winter sleep. Am J Phys 224:491–496

    Article  CAS  Google Scholar 

  • Nelson RA, Folk GE, Pfeiffer EW, Craighead EW, Jonkel JJ, Steiger DL (1983) Behavior, biochemistry and hibernation in black, grizzly and polar bears. Ursus 5:284–290

    Google Scholar 

  • Nelson RA, Beck TDI, Steiger DL (1984) Ratio of serum urea to serum creatinine in wild black bears. Science 226:841–842

    Article  CAS  PubMed  Google Scholar 

  • Obbard ME, Cattet MRL, Howe EJ, Middel KR, Newton EJ, Kolenosky GB, Abraham KF, Greenwood CJ (2016) Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arct Sci 2:15–32

    Article  Google Scholar 

  • Øritsland N (1970) Temperature regulation of the polar bear (Thalarctos maritimus). Comp Biochem Physiol 37:225–233

    Article  Google Scholar 

  • Owen MA, Bowles AE (2011) In-air auditory psychophysics and the management of a threatened carnivore, the polar bear (Ursus maritimus). Int J Comp Psychol 24:244–254

    Article  Google Scholar 

  • Owen MA, Swaisgood RR, Slocomb C, Amstrup SC, Durner GM, Simac K, Pessier AP (2015) An experimental investigation of chemical communication in the polar bear. J Zool 295:36–43

    Article  Google Scholar 

  • Paetkau D, Amstrup SC, Born EW, Calvert W, Derocher AE, Garner GW, Messier F, Stirling I, Taylor MK, Wiig Ø, Strobeck C (1999) Genetic structure of the world’s polar bear populations. Mol Ecol 8:1571–1584

    Article  CAS  PubMed  Google Scholar 

  • Pagano AM, Durner GM, Amstrup SC, Simac KS, York GS (2012) Long-distance swimming by polar bears (Ursus maritimus) of the Southern Beaufort Sea during years of extensive open water. Can J Zool 90:663–676

    Article  Google Scholar 

  • Pagano AM, Rode KD, Atkinson SN (2017) Evaluating methods to assess the body condition of female polar bears. Ursus 28:171–181

    Article  Google Scholar 

  • Pagano AM, Carnahan AM, Robbins CT, Owen MA, Batson T, Wagner N, Cutting A, Nicassio-Hiskey N, Hash A, Williams TM (2018a) Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical? J Exp Biol 221:1–9

    Article  Google Scholar 

  • Pagano AM, Durner GM, Rode KD, Atwood TC, Atkinson SN, Peacock E, Costa DP, Owen MA, Williams TM (2018b) High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science 359:568–572

    Article  CAS  PubMed  Google Scholar 

  • Pagano AM, Cutting A, Nicassio-Hiskey N, Hash A, Williams TM (2019) Energetic costs of aquatic locomotion in a subadult polar bear. Mar Mamm Sci 35:649–659

    Article  Google Scholar 

  • Patyk KA, Duncan C, Nol P, Sonne C, Laidre K, Obbard M, Wiig Ø, Aars J, Regehr E, Gustafson LL, Atwood TC (2015) Establishing a definition of polar bear (Ursus maritimus) health: a guide to research and management activities. Sci Total Environ 514:371–378

    Article  CAS  PubMed  Google Scholar 

  • Peacock E, Sonsthagen SA, Obbard ME, Boltunov A, Regehr EV, Ovsyanikov N, Aars J, Atkinson SN, Sage GK, Hope AG, Zeyl E, Bachmann L, Ehrich D, Scribner KT, Amstrup SC, Belikov S, Born EW, Derocher AE, Stirling I, Taylor MK, Wiig Ø, Paetkau D, Talbot SL (2015) Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic. PLoS One 10:e112021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peichl L, Dubielzig RR, Kübber-Heiss A, Schubert C, Ahnelt PK (2005) Retinal cone types in brown bears and the polar bear indicate dichromatic color vision. 2005 annual meeting of the Association for Research in Vision and Ophthalmology (ARVO): abstract 4539

    Google Scholar 

  • Pertoldi C, Sonne C, Dietz R, Schmidt NM, Loeschcke V (2009) Craniometric characteristics of polar bear skulls from two periods with contrasting levels of industrial pollution and sea ice extent. J Zool 279:321–328

    Article  Google Scholar 

  • Pilfold NW, Hedman D, Stirling I, Derocher AE, Lunn NJ, Richardson E (2016) Mass loss rates of fasting polar bears. Physiol Biochem Zool 89:377–388

    Article  PubMed  Google Scholar 

  • Polischuk SC, Norstrom RJ, Ramsay MA (2002) Body burdens and tissue concentrations of organochlorines in polar bears (Ursus maritimus) vary during seasonal fasts. Environ Pollut 118:29–39

    Article  CAS  Google Scholar 

  • Pomeroy P (2011) Reproductive cycles of marine mammals. Anim Reprod Sci 124:184–193

    Article  CAS  PubMed  Google Scholar 

  • Pond CM, Mattacks CA, Colby RH, Ramsay MA (1992) The anatomy, chemical-composition, and metabolism of adipose-tissue in wild polar bears (Ursus maritimus). Can J Zool 70:326341

    Article  Google Scholar 

  • Ponganis PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G (2003) Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comp Biochem Physiol Mol Integr Physiol 135:477–487

    Article  CAS  Google Scholar 

  • Ramsay MA, Dunbrack RL (1986) Physiological constraints on life-history phenomena–the example of small bear cubs at birth. Am Nat 127:735–743

    Article  Google Scholar 

  • Ramsay MA, Nelson RA, Stirling I (1991) Seasonal changes in the ratio of serum urea to creatinine in feeding and fasting polar bears. Can J Zool 69:298–302

    Article  CAS  Google Scholar 

  • Regehr EV, Laidre KL, Akçakaya HR, Amstrup SC, Atwood TC, Lunn NJ, Obbard M, Stern H, Thiemann GW, Wiig Ø (2016) Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biol Lett 12:20160556

    Article  PubMed  PubMed Central  Google Scholar 

  • Rigét F, Bossi R, Sonne C, Vorkamp K, Dietz R (2013) Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends. Chemosphere 93:1607–1614

    Article  PubMed  CAS  Google Scholar 

  • Rinker DC, Specian NK, Zhao S, Gibbons JG (2019) Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A 116:13446–13451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rode KD, Amstrup S, Regehr EV (2010) Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol Appl 20:768–782

    Article  PubMed  Google Scholar 

  • Rode KD, Peacock E, Taylor M, Stirling I, Born EW, Laidre KL, Wiig Ø (2012) A tale of two polar bear populations: ice habitat, harvest, and body condition. Popul Ecol 54:3–18

    Article  Google Scholar 

  • Rode KD, Regehr EV, Douglas DC, Durner G, Derocher AE, Thiemann GW, Budge SM (2014) Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Glob Change Biol 20:76–88

    Article  Google Scholar 

  • Rode KD, Robbins CT, Nelson L, Amstrup SC (2015) Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front Ecol Environ 13:138–145

    Article  Google Scholar 

  • Rode KD, Wilson RR, Douglas DC, Muhlenbruch V, Atwood TC, Regehr EV, Richardson ES, Pilfold NW, Derocher AE, Durner GM, Stirling I, Amstrup SC, St. Martin M, Pagano AM, Simac K (2018) Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Glob Change Biol 24:410–423

    Article  Google Scholar 

  • Ronald K, Lee J (1981) The spectral sensitivity of a polar bear. Comp Biochem Physiol A Physiol 70:595–598

    Article  Google Scholar 

  • Rosing-Asvid A, Born E, Kingsley M (2002) Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biol 25:878–883

    Article  Google Scholar 

  • Sacco T, Van Valkenburgh B (2004) Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae). J Zool 263:41–54

    Article  Google Scholar 

  • Sasaki M, Endo H, Yamagiwa D, Takagi H, Arishima K, Makita T, Hayashi Y (2000) Adaptation of the muscles of mastication to the flat skull feature in the polar bear (Ursus maritimus). J Vet Med Sci 62:7–14

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Endo H, Wiig Ø, Derocher AE, Tsubota T, Taru H, Yamamoto M, Arishima K, Hayashi Y, Kitamura N, Yamada J (2005) Adaptation of the hindlimbs for climbing in bears. Ann Anat–Anat Anz 187:153–160

    Article  Google Scholar 

  • Schaefer EJ, Asztalos BF (2007) Increasing high-density lipoprotein cholesterol, inhibition of cholesteryl ester transfer protein, and heart disease risk reduction. Am J Cardiol 100:25–31

    Article  CAS  Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950) Body insulation of some Arctic and tropical mammals and birds. Biol Bull 99:225–236

    Article  CAS  PubMed  Google Scholar 

  • Schwab C, Ganzle M (2011) Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can J Microbiol 57:177–185

    Article  CAS  PubMed  Google Scholar 

  • Sciullo L, Thiemann GW, Lunn NJ (2016) Comparative assessment of metrics for monitoring the body condition of polar bears in western Hudson Bay. J Zool 300:45–58

    Article  Google Scholar 

  • Senoo H, Imai K, Mezaki Y, Miura M, Morii M, Fujiwara M, Blomhoff R (2012) Accumulation of vitamin A in the hepatic stellate cell of arctic top predators. Anat Rec 295:1660–1668

    Article  CAS  Google Scholar 

  • Singer MA (2003) Dietary protein-induced changes in excretory function: a general animal design feature. Comp Biochem Physiol Part B Biochem Mol Biol 136:785–801

    Article  CAS  Google Scholar 

  • Slater GJ, Figueirido B, Louis L, Yang P, Van Valkenburgh B (2010) Biomechanical consequences of rapid evolution in the polar bear lineage. PLoS One 5:1–7

    Article  Google Scholar 

  • Sonne C, Bechshøft TØ, Rigét FF, Baagøe HJ, Hedayat A, Andersen M, Bech-Jensen J-E, Hyldstrup L, Letcher RJ, Dietz R (2013) Size and density of East Greenland polar bear (Ursus maritimus) skulls: valuable bio-indicators of environmental changes? Ecol Indic 34:290–295

    Article  Google Scholar 

  • Spady TJ, Lindburg DG, Durrant BS (2007) Evolution of reproductive seasonality in bears. Mammal Rev 37:21–53

    Article  Google Scholar 

  • Stenvinkel P, Fröbert O, Anderstam B, Palm F, Eriksson M, Bragfors-Helin A-C, Qureshi AR, Larsson T, Friebe A, Zedrosser A, Josefsson J, Svensson M, Sahdo B, Bankir L, Johnson RJ (2013) Metabolic changes in summer active and anuric hibernating free-ranging brown bears (Ursus arctos). PLoS One 8:e72934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirling I (1974) Midsummer observations on behavior of wild polar bears (Ursus maritimus). Can J Zool 52:1191–1198

    Article  Google Scholar 

  • Stirling I (1999) Polar Bears. University of Michigan Press, Ann Arbor, MI, p 232

    Google Scholar 

  • Stirling I, Archibald WR (1977) Aspects of predation of seals by polar bears. J Fish Res Board Can 34:1126–1129

    Article  Google Scholar 

  • Stirling I, McEwan EH (1975) Caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can J Zool 53:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Stirling I, Lunn NJ, Iacozza J (1999) Long-term trends in the population ecology of polar bears in Western Hudson Bay in relation to climatic change. Arctic 52:294–306

    Article  Google Scholar 

  • Stirling I, Thiemann GW, Richardson E (2008) Quantitative support for a subjective fatness index for immobilized polar bears. J Wildl Manag 72:568–574

    Article  Google Scholar 

  • Stirling I, Spencer C, Andriashek D (2016) Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Mar Mamm Sci 32:13–37

    Article  Google Scholar 

  • Swenson JE, Adamič M, Huber D, Stokke S (2007) Brown bear body mass and growth in northern and southern Europe. Oecologia 153:37–47

    Article  PubMed  Google Scholar 

  • Tall AR (2009) The effects of cholesterol ester transfer protein inhibition on cholesterol efflux. Am J Cardiol 104:39–45

    Article  CAS  Google Scholar 

  • Tartu S, Bourgeon S, Aars J, Andersen M, Lone K, Jenssen BM, Polder A, Thiemann GW, Torget V, Welker JM, Routti H (2017) Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard. Environ Pollut 229:146–158

    Article  CAS  PubMed  Google Scholar 

  • Thiemann GW, Iverson SJ, Stirling I (2006) Seasonal, sexual and anatomical variability in the adipose tissue of polar bears (Ursus maritimus). J Zool 269:65–76

    Article  Google Scholar 

  • Thompson CS, Mikhailidis DP, Gill DS, Jeremy JY, Bell JL, Dandona P (1989) Effect of starvation and sampling time on plasma alkaline phosphatase activity and calcium homeostasis in the rat. Lab Anim 23:53–58

    Article  CAS  PubMed  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  PubMed  CAS  Google Scholar 

  • Tryland M, Brun E, Derocher AE, Arnemo JM, Kierulf P, Ølberg R-A, Wiig Ø (2002) Plasma biochemical values from apparently healthy free-ranging polar bears from Svalbard. J Wildl Dis 38:566–575

    Article  CAS  PubMed  Google Scholar 

  • Wall WP (1983) The correlation between high limb-bone density and aquatic habits in recent mammals. J Paleontol 57:197–207

    Google Scholar 

  • Wang Q-L, Li Z-B, Kong H-Y, He J-H (2015) Fractal analysis of polar bear hairs. Therm Sci 19:143–144

    Article  CAS  Google Scholar 

  • Watts PD, Hansen SE (1987) Cyclic starvation as a reproductive strategy in the polar bear. Symp Zool Soc Lond 57:306–318

    Google Scholar 

  • Watts PD, Øritsland NA, Hurst RJ (1987) Standard metabolic rate of polar bears under simulated denning conditions. Physiol Zool 60:687–691

    Article  Google Scholar 

  • Watts PD, Ferguson KL, Draper BA (1991) Energetic output of subadult polar bears (Ursus maritimus) - resting, disturbance and locomotion. Comp Biochem Physiol Physiol 98:191–193

    Article  CAS  Google Scholar 

  • Weber DS, Van Coeverden De Groot PJ, Peacock E, Schrenzel MD, Perez DA, Thomas S, Shelton JM, Else CK, Darby LL, Acosta L, Harris C, Youngblood J, Boag P, Desalle R (2013) Low MHC variation in the polar bear: implications in the face of Arctic warming? Anim Conserv 16:671–683

    Article  Google Scholar 

  • Whiteman JP, Frank N, Greller KA, Harlow HJ, Ben-David M (2013) Characterization of blood lipoproteins and validation of cholesterol and triacylglycerol assays for free-ranging polar bears (Ursus maritimus). J Vet Diagn Investig 25:423–427

    Article  Google Scholar 

  • Whiteman JP, Harlow HJ, Durner GM, Anderson-Sprecher R, Albeke SE, Regehr EV, Amstrup SC, Ben-David M (2015) Summer declines in activity and body temperature offer polar bears limited energy savings. Science 349:295–298

    Article  CAS  PubMed  Google Scholar 

  • Whiteman JP, Rourke BC, Robles M, Harlow HJ, Durner GM, Amstrup SC, Regehr EV, Ben-David M (2017) Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer. Conserv Physiol 5:cox049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Ben-David M (2018) Phenotypic plasticity and climate change: can polar bears respond to longer Arctic summers with an adaptive fast? Oecologia 186:369–381

    Article  PubMed  Google Scholar 

  • Whiteman JP, Harlow HJ, Durner GM, Regehr EV, Amstrup SC, Ben-David M (2019) Heightened immune system function in polar bears using terrestrial habitats. Physiol Biochem Zool 92:1–11

    Article  PubMed  Google Scholar 

  • Wiig Ø, Derocher AE, Cronin MM, Skaare JU (1998) Female pseudohermaphrodite polar bears at Svalbard. J Wildl Dis 34:792–796

    Article  CAS  PubMed  Google Scholar 

  • Williams MF (2006) Morphological evidence of marine adaptations in human kidneys. Med Hypotheses 66:247–257

    Article  PubMed  Google Scholar 

  • Williams TM, Kastelein RA, Davis RW, Thomas JA (1988) The effects of oil contamination and cleaning on sea otters I: thermoregulatory implications based on pelt studies. Can J Zool 66:2776–2781

    Google Scholar 

  • Williams TM, Haun J, Davis RW, Fuiman LA, Kohin S (2001) A killer appetite: metabolic consequences of carnivory in marine mammals. Comp Biochem Physiol A Mol Integr Physiol 129:785–796

    Article  CAS  PubMed  Google Scholar 

  • Winer JN, Arzi B, Leale DM, Kass PH, Verstraete FJM (2016) Dental and temporomandibular joint pathology of the polar bear (Ursus maritimus). J Comp Pathol 155:231–241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank M. Ben-David, H. Harlow, S. Amstrup, G. Durner, and E. Regehr for being generous and supportive colleagues and collaborators while studying this remarkable species. I thank R. Davis, B. Würsig, and A. Pagano for the opportunity to contribute to this volume and for editorial input. I am grateful to the many institutions that provide support for polar bear research, such as US Geological Survey, US Fish and Wildlife Service, National Science Foundation, Environmental Protection Agency, and Polar Bears International. This chapter was not reviewed nor approved by any institution or agency, and views are solely those of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Whiteman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whiteman, J.P. (2021). Polar Bear Behavior: Morphologic and Physiologic Adaptations. In: Davis, R.W., Pagano, A.M. (eds) Ethology and Behavioral Ecology of Sea Otters and Polar Bears. Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-66796-2_12

Download citation

Publish with us

Policies and ethics