Skip to main content
Log in

The regulation of food intake in mammalian hibernators: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

One of the most profound hallmarks of mammalian hibernation is the dramatic reduction in food intake during the winter months. Several species of hibernator completely cease food intake (aphagia) for nearly 7 months regardless of ambient temperature and in many cases, whether or not food is available to them. Food intake regulation has been studied in mammals that hibernate for over 50 years and still little is known about the physiological mechanisms that control this important behavior in hibernators. It is well known from lesion experiments in non-hibernators that the hypothalamus is the main brain region controlling food intake and therefore body mass. In hibernators, the regulation of food intake and body mass is presumably governed by a circannual rhythm since there is a clear seasonal rhythm to food intake: animals increase food intake in the summer and early autumn, food intake declines in autumn and actually ceases in winter in many species, and resumes again in spring as food becomes available in the environment. Changes in circulating hormones (e.g., leptin, insulin, and ghrelin), nutrients (glucose, and free fatty acids), and cellular enzymes such as AMP-activated protein kinase (AMPK) have been shown to determine the activity of neurons involved in the food intake pathway. Thus, it appears likely that the food intake pathway is controlled by a variety of inputs, but is also acted upon by upstream regulators that are presumably rhythmic in nature. Current research examining the molecular mechanisms and integration of environmental signals (e.g., temperature and light) with these molecular mechanisms will hopefully shed light on how animals can turn off food intake and survive without eating for months on end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACC:

Acetyl CoA carboxylase

AgRP:

Agouti-related protein

AMPK:

AMP-activated protein kinase

ARC:

Arcuate nucleus of hypothalamus

BBB:

Blood–brain barrier

CART:

Cocaine-amphetamine regulated transcript

FFAs:

Free fatty acids

GMGS:

Golden-mantled ground squirrel

NPY:

Neuropeptide Y

POMC:

Pro-opiomelanocortin

T a :

Ambient temperature

T b :

Body temperature

UCP:

Uncoupling protein

WAT:

White adipose tissue

References

  • Andrews MT, Squire TL, Bowen CM, Rollins MB (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Physiology 95:8392–8397

    CAS  Google Scholar 

  • Andrews MT, Russeth KP, Drewes LR, Henry PG (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296:R383–R393

    Article  PubMed  CAS  Google Scholar 

  • Ariyasu H, Takaya K, Hosoda H, Iwakura H, Ebihara K, Mori K (2002) Delayed short-term secretory regulation of ghrelin in obese animals: evidenced by a specific RIA for the active form of ghrelin. Endocrinology 143:3341–3350

    Article  PubMed  CAS  Google Scholar 

  • Armitage KB, Shulenberger E (1972) Evidence for a circannual metabolic cycle in Citellus tridecemlineatus, a hibernator. Comp Biochem Physiol A Comp Physiol 42:667–688

    Article  PubMed  CAS  Google Scholar 

  • Banks WA (2006) The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol Behav 89:472–476

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Barazzoni R, Zanetti M, Stebel M, Biolo G, Cattin L, Guarnieri G (2003) Hyperleptinemia prevents increased plasma ghrelin concentration during short-term moderate caloric restriction in rats. Gastroenterology 124:1188–1192

    Article  PubMed  CAS  Google Scholar 

  • Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 284:R1306–R1313

    PubMed  CAS  Google Scholar 

  • Barnes BM, Kretzmann M, Licht P, Zucker I (1986) The influence of hibernation on testis growth and spermatogenesis in the golden-mantled ground squirrel, Spermophilus lateralis. Biol Reprod 35:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Bauman WA, Meryn S, Florant GL (1988) Cholecystokinin (CCK) and vasoactive intestinal peptide (VIP) in the cerebral cortex of the non-hibernating and hibernating golden-mantled ground squirrel. Comp Biochem Physiol A Comp Physiol 91(1):179–181

    Google Scholar 

  • Belgardt BF, Okamura T, Brüning JC (2009) Hormone and glucose signaling in POMC and AgRP neurons. J Physiol 587:5305–5314

    Article  PubMed  CAS  Google Scholar 

  • Belsham DD, Cai F, Cui H, Smukler SR, Salapatek AM, Shkreta L (2004) Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology 145:393–400

    Article  PubMed  CAS  Google Scholar 

  • Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171

    Article  PubMed  CAS  Google Scholar 

  • Biggar KK, Storey KB (2011) The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Blazquez C, Woods A, de Ceballos ML, Carling D, Guzman M (1999) The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem 73:1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Blouet C, Schwartz GJ (2010) Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 209:1–12

    Article  PubMed  CAS  Google Scholar 

  • Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18:123–129

    Article  PubMed  CAS  Google Scholar 

  • Boonstra R, Bradley AJ, Delehanty B (2011) Preparing for hibernation in ground squirrels: adrenal androgen production in summer linked to environmental severity in winter. Funct Ecol. doi: 10.1111/j.1365-2435.2011.01890.x

  • Boswell T, Richardson RD, Schwartz MW, D’Alessio DA, Woods SC, Sipols AJ, Baskin DG, Kenagy GJ (1993) NPY and galanin in a hibernator: hypothalamic gene expression and effects on feeding. Brain Res Bull 32:379–384

    Article  PubMed  CAS  Google Scholar 

  • Boswell T, Woods SC, Kenagy GJ (1994) Seasonal changes in body mass, insulin, and glucocorticoids of free-living golden-mantled ground squirrels. Gen Comp Endocrinol 96:339–346

    Article  PubMed  CAS  Google Scholar 

  • Boyer BB, Ormseth OA, Buck L, Nicolson M, Pelleymounter MA, Barnes BM (1997) Leptin prevents posthibernation weight gain but does not reduce energy expenditure in Arctic GS. Comp Biochem Physiol 118:405–412

    CAS  Google Scholar 

  • Bradbury M (1979) The concept of a blood–brain barrier. Wiley, New York

    Google Scholar 

  • Brand MD, Chien LF, Ainscow EK, Rolfe DFS, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187:132–139

    Article  PubMed  CAS  Google Scholar 

  • Büchner S, Stubbe M, Striese D (2003) Breeding and biological data for the common dormouse (Muscardinus avellanarius) in Eastern Saxony (Germany). Acta Zool Acad Sci Hung 49(Suppl. 1):19–26

    Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol 279:R255–R262

    CAS  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385

    Article  PubMed  CAS  Google Scholar 

  • Buzadzic B, Spasic M, Saicic ZS, Radojicic R, Petrovic VM, Halliwell B (1990) Antioxidant defenses in the ground squirrel Citellus citellus. 2. The effect of hibernation. Free Radic Biol Med 9:407–413

    Article  PubMed  CAS  Google Scholar 

  • Carling D (2005) AMP-activated protein kinase: balancing the scales. Biochimie 87:87–91

    Article  PubMed  CAS  Google Scholar 

  • Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van Der Ploeg LH, Howard AD, MacNeil DJ, Qian S (2004) Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y (NPY) and Agouti-related protein (AgRP). Endocrinol 145:2607–2612

    Article  CAS  Google Scholar 

  • Chen YJ, Wu CY, Shen JL, Chu SY, Chen CK, Chang YT, Chen CM (2008) Psoriasis independently associated with hyperleptinemia contributing to metabolic syndrome. Arch Dermatol 144:1571–1575

    Article  PubMed  Google Scholar 

  • Chung D, Lloyd GP, Thomas RH, Guglielmo CG, Staples JF (2011) Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient. J Comp Physiol B. doi:10.1007/s00360-010-0547-x

  • Claret M, Smith MA, Batterham RL, Selman C, Choudhury AI, Fryer LG, Clements M, Al-Qassab H, Heffron H, Xu AW, Speakman JR, Barsh GS, Viollet B, Vaulont S, Ashford ML, Carling D, Withers DJ (2007) AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest 117:2325–2336

    Article  PubMed  CAS  Google Scholar 

  • Concannon P, Levac K, Rawson R, Tennant B, Bensadoun A (2001) Seasonal changes in serum leptin, food intake, and body weight in photoentrained woodchucks. Am J Physiol Regul Integr Comp Physiol 281:R951–R959

    PubMed  CAS  Google Scholar 

  • Cota D, Proulx K, Blake Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  PubMed  CAS  Google Scholar 

  • Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  PubMed  CAS  Google Scholar 

  • Coyral-Castel S, Tosca L, Ferreira G, Jeanpierre E, Rame C, Lomet D, Caraty A, Monget P, Chabrolle C, Dupont J (2008) The effect of AMP-activated kinase activation on gonadotropin-releasing hormone secretion in GT1–7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J Neuroendocrinol 20:335–346

    Article  PubMed  CAS  Google Scholar 

  • Cummings DE, Foster KE (2003) Ghrelin-leptin tango in body-weight regulation. Gastroenterology 124:1532–1535

    Article  PubMed  Google Scholar 

  • Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep?–Ground squirrels sleep during arousals from hibernation. Neurosci Lett 12:265–268

    Article  Google Scholar 

  • Dailey MJ, Bartness TJ (2010) Arcuate nucleus destruction does not block food deprivation-induced increases in food foraging and hoarding. Brain Res 1323:94–108

    Article  PubMed  CAS  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    Article  PubMed  CAS  Google Scholar 

  • Dark J, Miller DR (1997) Metabolic fuel privation in hibernating and awake ground squirrels. Physiol Behav 63:59–65

    Article  PubMed  CAS  Google Scholar 

  • Davson H, Segal MB (1996) Special aspects of the blood–brain barrier. In: Physiology of the CSF and blood–brain barriers. CRC Press, Boca Raton, pp 303–485

  • de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HA (2011) Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 301:E187–E195

    Article  PubMed  CAS  Google Scholar 

  • de Souza FSJ, Nasif S, Lopez-Leal R, Levi DH, Low MJ, Rubinsten M (2011) The estrogen receptor ∝ colocalizes with proopiomelanocortin in hypothalamic neurons and binds to a conserved motif present in the neuron-specific enhancer nPE2. Eur J Pharmacol 660:181–187

    Article  PubMed  CAS  Google Scholar 

  • Dhillon SS, Belsham DD (2011) Estrogen inhibits NPY secretion through membrane-associated estrogen receptor (ER)-α in clonal, immortalized hypothalamic neurons. Int J Obes 35:198–207

    Article  CAS  Google Scholar 

  • Diéguez C, Vazquez MJ, Romero A, López M, Nogueiras R (2011) Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins. Neuroendocrinology 94:1–11

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Edmond J (1992) Energy metabolism in developing brain cells. Can J Physiol Pharmacol 70:S118–S129

    Article  PubMed  CAS  Google Scholar 

  • Epperson LE, Karimpour-Fard A, Hunter LE, Martin SL (2011) Metabolic cycles in a circannual hibernator. Physiol Genomics 43:799–807

    Article  PubMed  CAS  Google Scholar 

  • Farr SA, Banks WA, Morley JE (2006) Effects of leptin on memory processing. Peptides 27:1420–1425

    Article  PubMed  CAS  Google Scholar 

  • Florant GL (1998) Lipid metabolism in hibernators: the importance of essential fatty acids. Am Zool 38:331–340

    CAS  Google Scholar 

  • Florant GL, Baumann WA (1984) Seasonal variations in carbohydrate metabolism in mammalian hibernators: insulin and body weight changes. In: Van Itallie TB, Hirsch J (eds) Advances in obesity research, vol 4. John Libbey, London, pp 57–64

    Google Scholar 

  • Florant GL, Lawrence AK, Williams K, Bauman WA (1985) Seasonal changes in pancreatic B-cell function in euthermic yellow-bellied marmots. Am J Physiol 249:R159–R165

    PubMed  CAS  Google Scholar 

  • Florant GL, Nuttle LC, Mullinex DE, Rintoul DA (1990) Plasma and white adipose tissue lipid composition in marmots. Am J Physiol 258:R1123–R1131

    PubMed  CAS  Google Scholar 

  • Florant GL, Singer L, Scheurink AJW, Park CR, Richardson RD, Woods SC (1991) Intraventricular insulin reduces food intake and body weight of marmots during the summer feeding period. Phys Behav 49:335–338

    Article  CAS  Google Scholar 

  • Florant GL, Hester L, Ameenuddin S, Rintoul DA (1993) The effect of a low essential fatty acid diet on hibernation in marmots. Am J Physiol 264:R747–R753

    PubMed  CAS  Google Scholar 

  • Florant GL, Porst H, Peiffer A, Hudachek SF, Pittman C, Summers SA, Rajala MW, Scherer PE (2004) Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). J Comp Physiol B 174:633–639

    Article  PubMed  CAS  Google Scholar 

  • Florant GL, Fenn AM, Healy JE, Wilkerson GK, Handa RJ (2010) To eat or not to eat: the effect of AICAR on food intake regulation in yellow-bellied marmots (Marmota flaviventris). J Exp Bio 213:2031–2037

    Article  Google Scholar 

  • Fowler PA (1988) Seasonal endocrine cycles in the European hedgehog, Erinaceus europaeus. J Reprod Fert 84:259–272

    Article  CAS  Google Scholar 

  • Frank CL (1994) Polyunsaturate content and diet selection by ground squirrels (Spermophilus lateralis). Ecology 75:458–463

    Article  Google Scholar 

  • Frank CL, Dierenfeld ES, Storey KB (1998) The relationship between lipid peroxidation, hibernation, and food selection in mammals. Am Zool 38:341–349

    CAS  Google Scholar 

  • Frank CL, Karpovich S, Barnes BM (2008) Dietary fatty acid composition and the hibernation patterns in free-ranging arctic ground squirrels. Physiol Biochem Zool 81:486–495

    Article  PubMed  CAS  Google Scholar 

  • Freeman DA, Lewis DA, Kauffman AS, Blum RM, Dark J (2004) Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R97–R103

    Article  PubMed  CAS  Google Scholar 

  • Galster W, Morrison PR (1975) Gluconeogenesis in arctic ground squirrels between periods of hibernation. Am J Physiol 228:325–330

    PubMed  CAS  Google Scholar 

  • Gao Q, Horvath TL (2008) Cross-talk between estrogen and leptin signaling in the hypothalamus. Am J Physiol Endocrinol Metab 294:E817–E826

    Article  PubMed  CAS  Google Scholar 

  • Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao XB, Mobbs C, Shulman GI, Diano S, Horvath TL (2007) Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med 13:89–94

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1991) The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. J Comp Physiol B 161:590–597

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Ann Rev Physiol 66:239–274

    Article  CAS  Google Scholar 

  • Geiser F (2007) Yearlong hibernation in a marsupial mammal. Naturwissenschaften 94:941–944

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol 252:R897–R901

    PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1988) Duration of torpor bouts in relation to temperature and energy metabolism in hibernating ground squirrels. Physiol Zool 61:442–449

    Google Scholar 

  • Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC (1996) Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 93:6231–6235

    Article  PubMed  CAS  Google Scholar 

  • Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol 291:R1303–R1309

    CAS  Google Scholar 

  • Hardie DG, Carling D (1997) The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D, Sim ATR (1989) The AMP-activated protein kinase–a multisubstrate regulator of lipid metabolism. Trends Biochem Sci 14:20–23

    Article  CAS  Google Scholar 

  • Harlow HJ (1996) Winter body fat, food consumption and nonshivering thermogenesis of representative spontaneous and facultative hibernators: the white-tailed prairie dog and black-tailed prairie dog. J Therm Biol 22:21–30

    Article  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829

    Article  PubMed  CAS  Google Scholar 

  • Healy JE, Richter MM, Suu L, Fried SK, Florant GL (2008) Changes in serum leptin concentrations with fat mass in golden-mantled ground squirrels (Spermophilus lateralis). In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology. University of KwaZulu-Natal, Pietermaritzburg

    Google Scholar 

  • Healy JE, Ostrom CE, Wilkerson GK, Florant GL (2010) Plasma ghrelin concentrations change with physiological state in a sciurid hibernator (Spermophilus lateralis). Gen Comp Endocrinol 166:372–378

    Article  PubMed  CAS  Google Scholar 

  • Healy JE, Bateman JL, Ostrom CE, Florant GL (2011a) Peripheral ghrelin stimulates feeding behavior and positive energy balance in a sciurid hibernator. Horm Behav 59:512–519

    Article  PubMed  CAS  Google Scholar 

  • Healy JE, Gearhart CN, Bateman JL, Handa RJ, Florant GL (2011b) AMPK and ACC change with fasting and physiological condition in euthermic and hibernating golden-mantled ground squirrels (Callospermophilus lateralis). Comp Biochem Physiol A Mol Integr Physiol 159:322–331

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696

    Article  PubMed  CAS  Google Scholar 

  • Helgen KM, Cole FR, Helgen LE, Wilson DE (2009) Generic revision in the holarctic ground squirrel genus Spermophilus. J Mamm 90:270–305

    Article  Google Scholar 

  • Herwig A, Wilson D, Logie TJ, Boelen A, Morgan PJ, Mercer JG, Barrett P (2009) Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 296:R1307–R1315

    Article  PubMed  CAS  Google Scholar 

  • Hewson AK, Dickson SL (2000) Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats. J Neuroendocrinol 12:1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Hill VL, Florant GL (2000) The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris). Physiol Behav 68:431–437

    Article  PubMed  CAS  Google Scholar 

  • Ho PWL, Liu HF, Ho JWM, Zhang WY, Chu ACY, Kwok KHH, Ge X, Chan KH, Ramsden DB, Ho SL (2010) Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells. Neurotoxic Res 17:332–343

    Article  CAS  Google Scholar 

  • Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE (2009) Insulin resistance is a cellular antioxidant defense mechanism. PNAS 106:17787–17792

    Article  PubMed  CAS  Google Scholar 

  • Horman S, Hussain N, Dilworth SM, Storey KB, Rider MH (2005) Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation. Comp Biochem Physiol B Biochem Mol Biol 142:374–382

    Article  PubMed  CAS  Google Scholar 

  • Hume ID, Beiglböck C, Ruf T, Frey-Roos F, Bruns U, Arnold W (2002) Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota). J Comp Physiol B 172:197–207

    Article  PubMed  CAS  Google Scholar 

  • Humphries MM, Thomas DW, Kramer DL (2003) The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool 76:165–179

    Article  PubMed  Google Scholar 

  • Jászberényi M, Bujdosó E, Bagosi Z, Telegdy G (2006) Mediation of the behavioral, endocrine and thermoregulatory actions of ghrelin. Horm Behav 50:266–273

    Article  PubMed  CAS  Google Scholar 

  • Jinka TR, Tøien Ø, Drew JK (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci 31:10752–10758

    Article  PubMed  CAS  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  PubMed  CAS  Google Scholar 

  • Karnani M, Burdakov D (2011) Multiple hypothalamic circuits sense and regulate glucose levels. Am J Physiol Regul Integr Comp Physiol 300:R47–R55

    Article  PubMed  CAS  Google Scholar 

  • Keen-Rhinehart E, Bartness TJ (2005) Peripheral ghrelin injections stimulate food intake, foraging, and food hoarding in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 288:R716–R722

    Article  PubMed  CAS  Google Scholar 

  • Kohno D, Sone H, Tanaka S, Kurita H, Gantulga D, Yada T (2011) AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neurosci Lett 499:194–198

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kondo K (2007) Endogenous circannual clock and HP complex in a hibernation control system. Cold Spring Harbor Symp Quant Biol LXXIL:607–613

    Article  Google Scholar 

  • Kronfeld-Schor N, Richardson C, Silvia BA, Kunz TH, Widmaier EP (2000) Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. Am J Physiol 279:R1277–R1281

    CAS  Google Scholar 

  • Kwok KH, Ho PW, Chu AC, Ho JW, Liu HF, Yiu DC, Chan KH, Kung MH, Ramsden DB, Ho SL (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med 49:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Lam TK (2011) Neuronal regulation of homeostasis by nutrient sensing. Nat Med 16:392–395

    Article  CAS  Google Scholar 

  • Lam TK, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of fatty acids. Nat Neurosci 8:579–584

    Article  PubMed  CAS  Google Scholar 

  • Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE (2009a) Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol 297:R655–R664

    Article  PubMed  CAS  Google Scholar 

  • Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE (2009b) Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 297:R1351–R1357

    Article  PubMed  CAS  Google Scholar 

  • Levin BE (2002) Glucosensing neurons: the metabolic sensors of the brain? Diabetes Nutr Metab 15:274–280

    PubMed  CAS  Google Scholar 

  • Liu D, Chan SL, de Souza-Pinto NC, Slevin JR, Wersto RP, Zhan M, Mustafa K, de Cabo R, Mattson MP (2006) Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med 8:389–414

    Article  PubMed  CAS  Google Scholar 

  • Lopez M, Lage R, Saha AK, Perez-Tilve D, Vazquez MJ, Varela L, Sangiao-Alvarellos S, Tovar S, Raghay K, Rodríguez-Cuenca S, Deoliveira RM, Castaneda T, Datta R, Dong JZ, Culler M, Sleeman MW, Alvarez CV, Gallego R, Lelliott CJ, Carling D, Tschop MH, Dieguez C, Vidal-Puig A (2008) Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab 7:389–399

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP (1948) The oxygen consumption and temperature regulation of hibernating hamsters. J Exp Zool 109:55–78

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New York

    Google Scholar 

  • Malan A (2010) Is the torpor-arousal cycle of hibernation controlled by a non-temperature compensated circadian clock? J Biol Rhythm 25:166–175

    Article  Google Scholar 

  • Matheson AL, Campbell KL, Willis CKR (2010) Feeding, fasting and freezing: energetic effects of meal size and temperature on torpor expression by little brown bats Myotis lucifugus. J Exp Bio 213:2165–2173

    Article  Google Scholar 

  • Melnyk RB, Mrosovsky N, Martin JM (1983) Spontaneous obesity and weight loss: insulin binding and lipogenesis in the dormouse. Am J Physiol 245:R403–R407

    PubMed  CAS  Google Scholar 

  • Melvin RG, Andrews MT (2009) Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol Metab 20:490–498

    Article  PubMed  CAS  Google Scholar 

  • Michener G (1993) Sexual differences in hibernaculum contents of Richardson’s ground squirrels: males store food. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the cold: ecological, physiological, and molecular mechanisms. Westview Press, Colorado, p 575

    Google Scholar 

  • Migrenne S, Le Foll C, Levin BE, Magnan C (2011) Brain lipid sensing and nervous control of energy balance. Diabetes Metab 37:83–88

    Article  PubMed  CAS  Google Scholar 

  • Millesi EHS, Dittami JP, Hoffmann LE, Daan S (1998) Parameters of mating effort and success in male European ground squirrels, Spermophilus citellus. Ethology 104:298–313

    Article  Google Scholar 

  • Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  PubMed  CAS  Google Scholar 

  • Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574

    Article  PubMed  CAS  Google Scholar 

  • Minokoshi Y, Shiuchi T, Lee S, Suzuki A, Okamoto S (2008) Role of hypothalamic AMP-kinase in food intake regulation. Nutrition 24:786–790

    Article  PubMed  CAS  Google Scholar 

  • Minor RK, Chang JW, de Cabo R (2009) Hungry for life: how the arcuate nucleus and neuropeptide Y may play a critical role in mediating the benefits of calorie restriction. Mol Cell Endocrinol 299:79–88

    Article  PubMed  CAS  Google Scholar 

  • Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, Nakazato M (2005) Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept 126:55–59

    Article  PubMed  CAS  Google Scholar 

  • Morton ML (1975) Seasonal cycles of body weights and lipid in Belding ground squirrels. Bull S C Acad Sci 74:128–143

    Google Scholar 

  • Mountjoy PD, Rutter GA (2007) Glucose sensing by hypothalamic neurons and pancreatic islet cells: AMPle evidence for common mechanisms? Exp Physiol 92:311–319

    Article  PubMed  CAS  Google Scholar 

  • Mouzannar R, McCafferty J, Benedetto G, Richardson C (2011) Transcriptional and phospho-proteomic screens reveal stem cell activation of insulin-resistance and transformation pathways following a single minimally toxic episode of ROS. Int J Genomics Proteomics 2:34–49

    PubMed  Google Scholar 

  • Mrosovsky N (1975) The amplitude and period of circannual cycles of body weight in golden-mantled ground squirrels with medial hypothalamic lesions. Brain Res 99:97–116

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Boshes M (1986) Meal patterns and food intakes of ground squirrels during circannual cycles. Appetite 7:163–175

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Powley TL (1977) Set points for body weight and fat. Behav Biol 20:205–223

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Sherry DF (1980) Animal anorexias. Science 207:837–842

    Article  PubMed  CAS  Google Scholar 

  • Murphy M, Ebling FJ (2011) The role of hypothalamic tri-iodothyronine availability in seasonal regulation of energy balance and body weight. J Thyroid Res. doi:10.4061/2011/387562

  • Nelson CJ, Otis JP, Carey HV (2010) Global analysis of circulating metabolites in hibernating ground squirrels. Comp Biochem Physiol Part D Genomics Proteomics 5:265–273

    Article  PubMed  CAS  Google Scholar 

  • Nohara K, Zhang Y, Waraich RS, Laque A, Tiano JP, Tong J, Munzberg H, Mauvais-Jarvis F (2011) Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology 152:1661–1669

    Article  PubMed  CAS  Google Scholar 

  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51:271–275

    Article  PubMed  CAS  Google Scholar 

  • Ormseth OA, Nicolson M, Pelleymounter MA, Boyer BB (1996) Leptin inhibits prehibernation hyperphagia and reduces body weight in arctic ground squirrels. Am J Physiol 271:R1775–R1779

    PubMed  CAS  Google Scholar 

  • Orr AL, Lohse LA, Drew KL, Hermes-Lima M (2009) Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A Mol Integr Physiol 153:213–221

    Article  PubMed  CAS  Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am J Physiol Regul Integr Comp Physiol 278:R698–R704

    PubMed  CAS  Google Scholar 

  • Otis JP, Raybould HE, Carey HV (2011) Cholecystokinin activation of central satiety centers changes seasonally in a mammalian hibernator. Gen Comp Endocrinol 171:269–274

    Article  PubMed  CAS  Google Scholar 

  • Panula P, Karlstedt K, Sallmen T, Peitsaro N, Kaslin J, Michelsen KA, Anichtchik O, Kukko-Lukjanov T, Lintunen M (2000) The histaminergic system in the brain: structural characteristics and changes in hibernation. J Chem Neuroanat 18:65–74

    Article  PubMed  CAS  Google Scholar 

  • Parrilla R (1978) Flux of metabolic fuels during starvation in the rat. Pflugers Arch Eur J Physiol 374:3–7

    Article  CAS  Google Scholar 

  • Pelz KM, Routman D, Driscoll JR, Kriegsfeld LJ, Dark J (2008) Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2DG-induced torpor-like hypothermia in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 294:R255–R265

    Article  PubMed  CAS  Google Scholar 

  • Pengelley ET (1974) Circannual Clocks. Academic Press, San Francisco

    Google Scholar 

  • Pengelley ET, Asmundson SM (1969) Free-running periods of endogenous circannian rhythms in the golden-mantled ground squirrel, Citellus lateralis. Comp Biochem Physiol 30:177–183

    Article  PubMed  CAS  Google Scholar 

  • Pengelley ET, Asmundson SJ, Barnes B, Aloia RC (1976) Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis. Comp Biochem Physiol A Comp Physiol 53:273–277

    Article  PubMed  CAS  Google Scholar 

  • Peruzzo B, Pastor FE, Blazquez JL, Schobitz K, Pelaez B, Amat P, Rodriguez EM (2000) A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132:10–26

    Article  PubMed  CAS  Google Scholar 

  • Revel FG, Herwig A, Garidou ML, Dardente H, Menet JS, Masson-Pévet M, Simonneaux V, Saboureau M, Pévet P (2007) The circadian clock stops ticking during deep hibernation in the European hamster. Proc Natl Acad Sci USA 104:13816–13820

    Article  PubMed  CAS  Google Scholar 

  • Roland AV, Moenter SM (2011) Glucosensing by GnRH neurons: inhibition by androgens and involvement of AMP-activated protein kinase. Mol Endocrinol 25:847–858

    Article  PubMed  CAS  Google Scholar 

  • Ruf T, Arnold W (2008) Effects of polyunsaturated fatty acids on hibernation and torpor: a review and hypothesis. Am J Physiol Regul Integr Comp Physiol 294:R1044–R1052

    Article  PubMed  CAS  Google Scholar 

  • Russell RL, O’Neill PH, Epperson LE, Martin SL (2010) Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure. J Comp Physiol B 180:1165–1172

    Article  PubMed  Google Scholar 

  • Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M, Cianflone K (2011) Acylation stimulating protein: a female lipogenic factor? Obes Rev 12:440–448

    Article  PubMed  CAS  Google Scholar 

  • Sallmén T, Beckman AL, Stanton TL, Eriksson KS, Tarhanen J, Tuomisto L, Panula P (1999) Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. J Neurosci 19:1824–1835

    PubMed  Google Scholar 

  • Sallmén T, Lozada AF, Anichtchik OV, Beckman AL, Panula P (2003) Increased brain histamine H3 receptor expression during hibernation in golden-mantled ground squirrels. BMC Neurosci 4:24

    Article  PubMed  Google Scholar 

  • Satinoff E (1967) Aberrations of regulation in ground squirrels following hypothalamic lesions. Am J Physiol 212:215–220

    Google Scholar 

  • Satinoff E (1970) Hibernation and the Central Nervous System. Prog Physiol Psychol 3:201–236

    Google Scholar 

  • Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, Kahn SE, Baskin DG, Woods SC, Figlewicz DP (1992) Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130:3608–3616

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Tøien Ø, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc Biol Sci 278:2369–2375

    Article  PubMed  Google Scholar 

  • Shimizu H, Arima H, Watanabe M, Goto M, Banno R, Sato I, Ozaki N, Nagasaki H, Oiso Y (2008) Glucocorticoids increase neuropeptide Y and agouti-related peptide gene expression via adenosine monophosphate-activated protein kinase signaling in the arcuate nucleus of rats. Endocrinol 149:4544–4553

    Article  CAS  Google Scholar 

  • Snapp BD, Heller HC (1981) Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol Zool 54:297

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR, Mitchell SE (2011) Caloric restriction. Mol Aspects Med. doi:10.1016/j.mam.2011.07.001

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    Article  PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. Adv Clin Chem 52:77–108

    Article  PubMed  CAS  Google Scholar 

  • Strauss A, Hoffmann IE, Walzl M, Millesi E (2009) Vaginal oestrus during the reproductive and non-reproductive period in European ground squirrels. Animal Reprod Sci 112:362–370

    Article  Google Scholar 

  • Szentirmai E, Kapas L, Krueger JM (2007) Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am J Physiol Regul Integr Comp Physiol 292:R575–R585

    Article  PubMed  CAS  Google Scholar 

  • Taché Y, Stengel A (2011) Interaction between gastric and upper small intestinal hormones in the regulation of hunger and satiety: ghrelin and cholecystokinin take the central stage. Curr Protein Pept Sci 12:293–304

    Article  PubMed  Google Scholar 

  • Tartaglia LA (1997) The leptin receptor. J Biol Chem 272:6093–6096

    PubMed  CAS  Google Scholar 

  • Thorp CR, Ram PK, Florant GL (1994) Diet alters metabolic rate in the yellow-bellied marmot (Marmota flaviventris) during hibernation. Physiol Zool 67:1213–1229

    Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  PubMed  CAS  Google Scholar 

  • Toshinai K, Mondal MS, Nakazato M, Date Y, Murakami N, Kojima M, Kangawa K, Matsukura S (2001) Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem Biophys Res Commun 281:1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  PubMed  Google Scholar 

  • Verty ANA, Allen AM, Oldfield BJ (2010) The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinol 151:4236–4246

    Article  CAS  Google Scholar 

  • Veyrat-Durebex C, Poher AL, Caillon A, Montet X, Rohner-Jeanrenaud F (2011) Alterations in lipid metabolism and thermogenesis with emergence of brown adipocytes in white adipose tissue in diet-induced obesity resistant Lou/C rats. Am J Physiol Endocrinol Metab 300:E1146–E1157

    Article  PubMed  CAS  Google Scholar 

  • Wade GN (1972) Gonadal hormones and behavioral regulation of body weight. Physiol Behav 8:523–534

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Walter RD, Bhat BG, Florant GL, Coleman RA (1997) Seasonal changes in enzymes of lipogenesis and triacylglycerol synthesis in the golden-mantled ground squirrel (Spermophilus lateralis). Comp Biochem Physiol B Biochem Mol Biol 118(2):261–267

    Google Scholar 

  • Wang R, Cruciani-Guglielmacci C, Migrenne S, Magnan C, Cotero VE, Routh VH (2006) Effects of oleic acid on distinct populations of neurons in the hypothalamic arcuate nucleus are dependent on extracellular glucose levels. J Neurophysiol 95:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Armitage KB (1981) Circannual rhythms of food consumption, body mass, and metabolism in yellow-bellied marmots. Comp Biochem Physiol A 69:621–626

    Article  Google Scholar 

  • Woods SC, Seeley RJ, Cota D (2008) Regulation of food intake through hypothalamic signaling networks involving mTOR. Annu Rev Nutr 28:295–311

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Barnes BM, Kohl F, Marr TG (2008) Modulation of gene expression in hibernating arctic ground squirrels. Physiol Genomics 32:170–181

    PubMed  CAS  Google Scholar 

  • Yang CS, Lam CKL, Chari M, Cheung GWC, Kokorovic A, Gao S, Leclerc I, Rutter GA, Lam TKT (2010) Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59:2435–2443

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. Brian Barnes, Loren Buck and Hannah Carey for their feedback and discussion of ideas in this manuscript. We also thank the anonymous reviewers that helped us to clarify and strengthen the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory L. Florant.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florant, G.L., Healy, J.E. The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B 182, 451–467 (2012). https://doi.org/10.1007/s00360-011-0630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0630-y

Keywords

Navigation