Skip to main content
Log in

Gut hormones in relation to body mass and torpor pattern changes during food restriction and re-feeding in the gray mouse lemur

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Potential implications of gut hormones in body mass and torpor and behavioral pattern changes induced by an incremental (40 and 80%) calorie restriction (CR) in long-days (LD, summer) and short-days (SD, winter) were investigated in gray mouse lemurs. Only 80% food-deprived LD and SD animals showed a continuous mass loss resulting in a 10 and 15% mass reduction, respectively. Ghrelin levels of all food-deprived groups increased by 2.6-fold on average and remained high after re-feeding while peptide YY (PYY) levels increased by 3.8-fold only in LD animals under 80% CR. In the re-fed SD group, body mass was positively associated with ghrelin and negatively associated with PYY, while no correlations were noted in the re-fed LD animals. Plasma glucagon-like peptide-1 (GLP-1) increased by 2.9-fold only in LD food-restricted mouse lemurs and was negatively associated with the minimal body temperature. No significant correlations were reported in food-deprived SD animals. These results suggest that ghrelin, PYY and GLP-1 may be related to pre-wintering fattening mechanisms and to the modulation of torpor expression, respectively. Such observation clearly warrants further investigations, but it opens an interesting area of research in torpor regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under curve

CR:

Calorie restriction

CRi:

Calorie restriction intensity

GIP:

Glucose-dependant insulinotropic polypeptide

GLP-1:

Glucagon-like peptide 1

LD:

Long-days

LD40:

Animals exposed to long-days under 40% calorie restriction

LD80:

Animals exposed to long-days under 80% calorie restriction

NPY:

Neuropeptide Y

PP:

Peptide P

PYY:

Peptide YY

SD:

Short-days

SD40:

Animals exposed to short-days under 40% calorie restriction

SD80:

Animals exposed to short-days under 80% calorie restriction

Tb:

Body temperature

References

  • Adams SH, Lei C, Jodka CM, Nikoulina SE, Hoyt JA, Gedulin B, Mack CM, Kendall ES (2006) PYY[3–36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 136:195–201

    PubMed  CAS  Google Scholar 

  • Angeloni SV, Glynn N, Ambrosini G, Garant MJ JDH, Suomi S, Hansen BC (2004) Characterization of the Rhesus Monkey ghrelin gene and factors influencing ghrelin gene expression and fasting plasma levels. Endocrinology 145:2197–2205

    Article  PubMed  CAS  Google Scholar 

  • Atgie C, Nibbelink M, Ambid L (1990) Sympathoadrenal activity and hypoglycemia in the hibernating garden dormouse. Physiol Behav 48:783–787

    Article  PubMed  CAS  Google Scholar 

  • Aujard F, Perret M, Vannier G (1998) Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character? J Comp Physiol B 168:540–548

    Article  PubMed  CAS  Google Scholar 

  • Bartness TJ, Morley JE, Levine AS (1986) Photoperiod-peptide interactions in the energy intake of Siberian hamsters. Peptides 7:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD, Bloom SR (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418:650–654

    Article  PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. Bmj 310:170

    PubMed  CAS  Google Scholar 

  • Bribiescas RG, Betancourt J, Torres AM, Reiches M (2007) Active ghrelin levels across time and associations with leptin and anthropometrics in healthy ache Amerindian women of Paraguay. Am J Hum Biol. doi:10.1002/ajhb.20699

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:20.21–20.29

    Google Scholar 

  • Dark J, Miller DR, Licht P, Zucker I (1996) Glucoprivation counteracts effects of testosterone on daily torpor in Siberian hamsters. Am J Physiol 270:R398–R403

    PubMed  CAS  Google Scholar 

  • Dark J, Miller DR, Zucker I (1994) Reduced glucose availability induces torpor in Siberian hamsters. Am J Physiol 267:R496–R501

    PubMed  CAS  Google Scholar 

  • Ding KH, Zhong Q, Xie D, Chen HX, Della-Fera MA, Bollag RJ, Bollag WB, Gujral R, Kang B, Sridhar S, Baile C, Curl W, Isales CM (2006) Effects of glucose-dependent insulinotropic peptide on behavior. Peptides 27:2750–2755

    Article  PubMed  CAS  Google Scholar 

  • Dulloo AG, Jacquet J, Montani JP (2002) Pathways from weight fluctuations to metabolic diseases: focus on maladaptive thermogenesis during catch-up fat. Int J Obes Relat Metab Disord 26(Suppl 2):S46–S57

    Article  PubMed  CAS  Google Scholar 

  • Elliott JA, Bartness TJ, Goldman BD (1987) Role of short photoperiod and cold exposure in regulating daily torpor in Djungarian hamsters. J Comp Physiol A 161:245–253

    Article  PubMed  CAS  Google Scholar 

  • Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A (2000) The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes Relat Metab Disord 24:288–298

    Article  PubMed  CAS  Google Scholar 

  • Freeman DA, Lewis DA, Kauffman AS, Blum RM, Dark J (2004) Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters. Am J Physiol 287:R97–R103

    Article  CAS  Google Scholar 

  • Geiser F (1991) The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. J Comp Physiol B 161:590–597

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Heldmaier G (1995) The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus. J Comp Physiol B 165:406–415

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1987) Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. Am J Physiol 252:R897–R901

    PubMed  CAS  Google Scholar 

  • Geiser F, Kenagy GJ (1993) Dietary fats and torpor patterns in hibernating ground squirrels. Can J Zool 71:1182–1186

    Article  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Geiser F, Kenagy GJ, Wingfield JC (1997) Dietary cholesterol enhances torpor in a rodent hibernator. J Comp Physiol B 167:416–422

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Kortner G, Schmidt I (1998) Leptin increases energy expenditure of a marsupial by inhibition of daily torpor. Am J Physiol 275:R1627–R1632

    PubMed  CAS  Google Scholar 

  • Geiser F, McAllan BM, Kenagy GJ, Hiebert SM (2007) Photoperiod affects daily torpor and tissue fatty acid composition in deer mice. Naturwissenschaften 94:319–325

    Article  PubMed  CAS  Google Scholar 

  • Genin F, Perret M (2000) Photoperiod-induced changes in energy balance in gray mouse lemurs. Physiol Behav 71:315–321

    Article  PubMed  CAS  Google Scholar 

  • Genin F, Perret M (2003) Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction. Comp Biochem Physiol B 136:71–81

    Article  PubMed  CAS  Google Scholar 

  • Genin F, Schilling A, Perret M (2005) Social inhibition of seasonal fattening in wild and captive gray mouse lemurs. Physiol Behav 86:185–194

    Article  PubMed  CAS  Google Scholar 

  • Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol 291:R1303–R1309

    CAS  Google Scholar 

  • Karmann H, Mrosovsky N, Heitz A, Le Maho Y (1994) Protein sparing on very low calorie diets: ground squirrels succeed where obese people fail. Int J Obes 18:351–353

    CAS  Google Scholar 

  • Katsuki A, Urakawa H, Gabazza EC, Murashima S, Nakatani K, Togashi K, Yano Y, Adachi Y, Sumida Y (2004) Circulating levels of active ghrelin is associated with abdominal adiposity, hyperinsulinemia and insulin resistance in patients with type 2 diabetes mellitus. Eur J Endocrinol 151:573–577

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Inui A, Hosoda H, Kangawa K, Hori T (2007) Perioperative plasma active and total ghrelin levels are reduced in acromegaly when compared with in nonfunctioning pituitary tumours even after normalization of serum GH. Clin Endocrinol 67:140–144

    Article  CAS  Google Scholar 

  • Klingenspor M, Niggemann H, Heldmaier G (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J Comp Physiol B 170:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Ueno N, Asakawa A, Sagiyama K, Naruo T, Mizuno S, Inui A (2007) A role for pancreatic polypeptide in feeding and body weight regulation. Peptides 28:459–463

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP (1982) Who is who among the hibernators. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 12–36

    Google Scholar 

  • Matson CA, Wiater MF, Kuijper JL, Weigle DS (1997) Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 18:1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Mercer JG (1998) Regulation of appetite and body weight in seasonal mammals. Comp Biochem Physiol C 119:295–303

    Article  PubMed  CAS  Google Scholar 

  • Morgan PJ, Mercer JG (2001) The regulation of body weight: lessons from the seasonal animal. Proc Nutr Soc 60:127–134

    Article  PubMed  CAS  Google Scholar 

  • Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854–859

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Inui A, Teranishi A, Miura M, Hirosue Y, Okita M, Himori N, Baba S, Kasuga M (1993) Effects of pancreatic polypeptide family peptides on feeding and learning behavior in mice. J Pharmacol Exp Ther 268:1010–1014

    Google Scholar 

  • Nieminen P, Rouvinen-Watt K, Saarela S, Mustonen AM (2007) Fasting in the American marten (Martes americana): a physiological model of the adaptations of a lean-bodied animal. J Comp Physiol B 177:787–795

    Article  PubMed  Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84:28–32

    Article  PubMed  CAS  Google Scholar 

  • Paul MJ, Freeman DA, Park JH, Dark J (2005) Neuropeptide Y induces torpor-like hypothermia in Siberian hamsters. Brain Res 1055:83–92

    Article  PubMed  CAS  Google Scholar 

  • Perret M (1992) Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol 59:1–25

    Article  PubMed  CAS  Google Scholar 

  • Perret M (1998) Energetic advantage of nest-sharing in a solitary primate, the lesser mouse lemur (Microcebus murinus). J Mammal 79(4):1093–1102

    Article  Google Scholar 

  • Perret M, Aujard F (2001) Daily hypothermia and torpor in a tropical primate: synchronization by 24-h light-dark cycle. Am J Physiol 281:R1925–R1933

    CAS  Google Scholar 

  • Perret M, Aujard F, Vannier G (1998) Influence of daylength on metabolic rate and daily water loss in the male prosimian primate Microcebus murinus. Comp Biochem Physiol 119:981–989

    Article  CAS  Google Scholar 

  • Ruf T, Klingenspor M, Preis H, Heldmaier G (1991) Daily torpor in the Djungarian hamster (Phodopus sungorus): interactions with food intake, activity, and social behaviour. J Comp Physiol B 160:609–615

    Article  Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112

    Article  PubMed  CAS  Google Scholar 

  • Schmid J (1999) Sex-specific differences in activity patterns and fattening in the gray mouse lemur (Microcebus murinus) in Madagascar. J Mammal 80:749–757

    Article  Google Scholar 

  • Seguy M, Perret M (2005) Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebus murinus). J Comp Physiol B 175:107–115

    Article  PubMed  CAS  Google Scholar 

  • Shalev A, Holst JJ, Keller U (1997) Effects of glucagon-like peptide 1 (7–36 amide) on whole-body protein metabolism in healthy man. Eur J Clin Invest 27:10–16

    Article  PubMed  CAS  Google Scholar 

  • Shousha S, Nakahara K, Nasu T, Sakamoto T, Murakami N (2007) Effect of glucagon-like peptide-1 and -2 on regulation of food intake, body temperature and locomotor activity in the Japanese quail. Neurosci lett 415:102–107

    Article  PubMed  CAS  Google Scholar 

  • Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A (2007) Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol 292:E1062–E1068

    CAS  Google Scholar 

  • Stamper JL, Dark J, Zucker I (1999) Photoperiod modulates torpor and food intake in Siberian hamsters challenged with metabolic inhibitors. Physiol Behav 66:113–118

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner S, Heldmaier G, Becker H (1983) The seasonal cycle of body weight in the Djungarian hamster: photoperiodic control and the influence of starvation and melatonin. Oecologia 60:401–405

    Article  Google Scholar 

  • Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D (2006) The full expression of fasting-induced torpor requires beta 3-adrenergic receptor signaling. J Neurosci 26:241–245

    Article  PubMed  CAS  Google Scholar 

  • Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913

    Article  PubMed  CAS  Google Scholar 

  • Tups A, Helwig M, Khorooshi RM, Archer ZA, Klingenspor M, Mercer JG (2004) Circulating ghrelin levels and central ghrelin receptor expression are elevated in response to food deprivation in a seasonal mammal (Phodopus sungorus). J Neuroendocrinol 16:922–928

    Article  PubMed  CAS  Google Scholar 

  • Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72

    Article  PubMed  CAS  Google Scholar 

  • Yannielli PC, Molyneux PC, Harrington ME, Golombek DA (2007) Ghrelin effects on the circadian system of mice. J Neurosci 27:2890–2895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S. Giroud is supported by an MNRT fellowship. The study was supported by an ATIP from the CNRS (S. Blanc), the Bettencourt Schueller Fondation (Y. Le Maho), the GIS Longévité (S. Blanc) and the ANR Alimentation & Nutrition Humaine (M Perret, S Blanc). This protocol received all ethic authorizations and was conducted under the authorization number 67-223 (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Blanc.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giroud, S., Perret, M., Le Maho, Y. et al. Gut hormones in relation to body mass and torpor pattern changes during food restriction and re-feeding in the gray mouse lemur. J Comp Physiol B 179, 99–111 (2009). https://doi.org/10.1007/s00360-008-0294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0294-4

Keywords

Navigation