Skip to main content
Log in

Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebus murinus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Microcebus murinus, a small nocturnal Malagasy primate, exhibits adaptive energy-saving strategies such as daily hypothermia and gregarious patterns during diurnal rest. To determine whether ambient temperature (Ta), food restriction and nest sharing can modify the daily body temperature (Tb) rhythm, Tb was recorded by telemetry during winter in six males exposed to different ambient temperatures (Ta=25, 20, 15°C) and/or to a total food restriction for 3 days depending on social condition (isolated versus pair-grouped). At 25°C, the daily rhythm of Tb was characterized by high Tb values during the night and lower values during the day. Exposure to cold significantly decreased minimal Tb values and lengthened the daily hypothermia. Under food restriction, minimal Tb values were also markedly lowered. The combination of food restriction and cold induced further increases in duration and depth of torpor bouts, minimal Tb reaching a level just above Ta. Although it influenced daily hypothermia less than environmental factors, nest sharing modified effects of cold and food restriction previously observed by lengthening duration of torpor but without increasing its depth. In response to external conditions, mouse lemurs may thus adjust their energy expenditures through daily modifications of both the duration and the depth of torpor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

T a :

Ambient temperature

T b :

Body temperature

T b night :

Mean body temperature during the dark phase

T b day :

Mean body temperature during the light phase

T b min :

Minimal body temperature values

Hmin:

Temporal occurrence of minimal body temperature dating from the onset of light period

References

  • Andrews JF (1995) Comparative studies on programs for management of energy supply: torpor, pre-winter fattening and migration. Proc Nutr Soc 54:301–315

    CAS  PubMed  Google Scholar 

  • Andrews RV, Philips D, Makihara D (1987) Metabolic and thermoregulatory consequences of social behaviors between Microtus townsendii. Comp Biochem Physiol 87A(2):345–348

    CAS  Google Scholar 

  • Arnold W (1990) The evolution of marmot sociality. II. Costs and benefits of joint hibernation. Behav Ecol Sociobiol 27:239–246

    Google Scholar 

  • Aujard F, Vasseur F (2001) Effect of ambient temperature on the body temperature rhythm of male gray mouse lemurs (Microcebus murinus). Int J Primatol 22(1):43–56

    Article  Google Scholar 

  • Aujard F, Perret M, Vannier G (1998) Thermoregulatory responses to variations of photoperiod and ambient temperature in the male lesser mouse lemur: a primitive or an advanced adaptive character? J Comp Physiol B 168:540–548

    CAS  PubMed  Google Scholar 

  • Bartels W, Law BS, Geiser F (1998) Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J Comp Physiol B 168:233–239

    CAS  PubMed  Google Scholar 

  • Bazin RC, MacArthur RA (1992) Thermal benefits of huddling in the muskrat (Ondatra zibethicus). J Mammal 73(3):559–564

    Google Scholar 

  • Canals M, Rosenmann M, Bozinovic F (1997) Geometrical aspects of the energetic effectiveness of huddling in small mammals. Acta Theriol 42(3):321–328

    Google Scholar 

  • Contreras LC (1984) Bioenergetics of huddling: test of a psycho-physiological hypothesis. J Mammal 65(2):256–262

    Google Scholar 

  • Dausmann KH, Glos JA, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    CAS  PubMed  Google Scholar 

  • Geiser F, Baudinette RV (1990) The relationship between body mass and the rate of rewarming from hibernation and daily torpor in mammals. J Exp Biol 151:349–359

    CAS  PubMed  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition. J Comp Physiol B 158:25–37

    CAS  PubMed  Google Scholar 

  • Geiser F, Heldmaier G (1995) The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus. J Comp Physiol B 165:406–415

    CAS  PubMed  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68(6):935–966

    Google Scholar 

  • Génin F, Perret M (2003) Daily hypothermia in captive grey mouse lemurs (Microcebus murinus): effects of photoperiod and food restriction. Comp Biochem Physiol B 136:71–81

    PubMed  Google Scholar 

  • Génin F, Nibbelink M, Galand M, Perret M, Ambid L (2003) Brown fat and non-shivering thermogenesis in the gray mouse lemur (Microcebus murinus). Am J Primatol 284:811–818

    Google Scholar 

  • Genoud M, Martin RD, Glaser D (1997) Rate of metabolism in the smallest simian primate, the pygmy marmoset (Cebuella pygmaea). Am J Primatol 41:229–245

    CAS  PubMed  Google Scholar 

  • Glaser H, Lustick S (1975) Energetics and nesting behavior of the northern white-footed mouse, Peromyscus leucopus noveboracensis. Physiol Zool 48(2):105–113

    Google Scholar 

  • Hayes LD (2000) To nest communally or not to nest communally: a review of rodent communal nesting and nursing. Anim Behav 59:677–688

    Article  PubMed  Google Scholar 

  • Hayes JP, Speakman JR, Racey PA (1992) The contributions of local heating and reducing exposed surface area to the energetic benefits of huddling by short-tailed field voles (Microtus agrestis). Physiol Zool 65(4):742–762

    Google Scholar 

  • Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706

    CAS  PubMed  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141(3):317–329

    PubMed  Google Scholar 

  • Hiebert SM (1990) Energy costs and temporal organization of torpor in the rufous hummingbird (Selasphorus rufus). Physiol Zool 63:1082–1097

    Google Scholar 

  • Holloway JC, Geiser F (1995) Influence of torpor on daily energy expenditure of the dasyurid marsupial Sminthopsis crassicaudata. Comp Biochem Physiol 112A(1):59–66

    CAS  Google Scholar 

  • Isbell LA (1984) Predation on primates: ecological patterns and evolutionary consequences. Evol Anthropol 3:61–71

    Google Scholar 

  • Kappeler PM (2000) Ecologie des microcèbes. Primatologie 3:145–171

    Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Lovegrove BG, Raman J (1998) Torpor patterns in the pouched mouse (Saccostomus campestris, Rodentia): a model animal for unpredictable environments. J Comp Physiol B 168:303–312

    CAS  PubMed  Google Scholar 

  • Lovegrove BG, Kötner G, Geiser F (1999) The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol Part B 168:303–312

    Article  Google Scholar 

  • Lynch GR, Bunin J, Schneider JE (1980) The effect of constant light and dark on the circadian nature of daily torpor in Peromyscus leucopus. Int J Biometeorol 24:49–55

    CAS  PubMed  Google Scholar 

  • Madison DM, Fitzgerald RW, Macshea WJ (1984) Dynamics of social nesting in overwintering meadow voles (Microtus pennsylvanicus): possible consequences for population cycling. Behav Ecol Sociobiol 15:9–17

    Article  Google Scholar 

  • Martin RD (1973) A review of the behavior and ecology of the lesser mouse lemur (Microcebus murinus). In: Michael RP, Crooks JH (eds) Comparative ecology and behavior of primates. Academic, London, pp 1–68

    Google Scholar 

  • Morton SR (1978) Torpor and nest-sharing in free-living Sminthopsis crassicaudata (Marsupialia) and Mus musculus (Rodentia). J Mammal 59(3):569–575

    Google Scholar 

  • Ortmann S, Heldmaier G, Schmid J, Ganzhorn JU (1997) Spontaneous daily torpor in Malagasy mouse lemurs. Naturwissenschaften 84:28–32

    CAS  PubMed  Google Scholar 

  • Ostner J (2002) Social thermoregulation in red fronted lemurs (Eulemur fulvus rufus). Folia Primatol 73(4):175–180

    PubMed  Google Scholar 

  • Perret M (1992) Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol 59:1–25

    Google Scholar 

  • Perret M (1998) Energetic advantage of nest-sharing in a solitary primate, the lesser mouse lemur (Microcebus murinus). J Mammal 79(4):1093–1102

    Google Scholar 

  • Perret M, Aujard F (2001) Daily hypothermia and torpor in a tropical primate: synchronisation by 24-h light-dark cycle. Am J Physiol 281:1925–1933

    Google Scholar 

  • Perret M, Aujard F, Vannier G (1998) Critical role of daylength in energy balance in a non human primate. In: Touitou Y (ed) Biological clocks: mechanisms and applications. Elsevier, Amsterdam, pp 415–418, ISBN 0-444-82503-7

  • Radespiel U, Cepok S, Zietemann V, Zimmermann E (1998) Sex-specific usage patterns of sleeping sites in grey mouse lemurs (Microcebus murinus) in northwestern Madagascar. Am J Primatol 46:77–84

    Article  CAS  PubMed  Google Scholar 

  • Ruby NF (2003) Hibernation: when good clocks go cold. J Biol Rhythms 18:275–286

    PubMed  Google Scholar 

  • Ruf T, Heldmaier G (1992) The impact of daily torpor on energy requirements in the Djungarian hamster, Phodopus sungorus. Physiol Zool 65(5):994–1010

    Google Scholar 

  • Ruf T, Steinlechner S, Heldmaier G (1989) Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. In: Malan A, Canguilhem B (eds) Living in the cold. Libbey Eurotext, Montrouge, pp 53–62

    Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112

    CAS  PubMed  Google Scholar 

  • Schmid J (1998) Tree holes used for resting by gray mouse lemurs (Microcebus murinus) in Madagascar: insulation capacities and energetic consequences. Int J Primatol 19(5):797–809

    Article  Google Scholar 

  • Schmid J (2000) Daily torpor in the gray mouse lemur (Microcebus murinus) in Madagascar: energetic consequences and biological significance. Oecologia 123:175–183

    Article  Google Scholar 

  • Schmid J (2001) Daily torpor in free-ranging gray mouse lemurs (Microcebus murinus) in Madagascar. Int J Primatol 22:1021–1031

    Article  Google Scholar 

  • Scholander PF, Walters V, Hock R, Irving L (1950) Body insulation of some arctic and tropical mammals. Biol Bull 99:225–236

    CAS  PubMed  Google Scholar 

  • Sealander JA (1952) The relationship of nest-protection and huddling to survival of Peromyscus at low ambient temperature. Ecology 33(1):63–71

    Google Scholar 

  • Snyder GK, Nestler JR (1990) Relationships between body temperature, thermal conductance, Q10 and energy metabolism during daily torpor and hibernation in rodents. J Comp Physiol B 159:667–675

    CAS  PubMed  Google Scholar 

  • Song X, Geiser F (1997) Daily torpor and energy expenditure in Sminthopsis macroura: interactions between food and water availability and temperature. Physiol Zool 70(3):331–337

    CAS  PubMed  Google Scholar 

  • Springer SD, Gregory PA, Barrett GW (1981) Importance of social grouping on bioenergetics of the golden mouse, Ochrotomys nuttalli. J Mammal 62(3):628–630

    Google Scholar 

  • Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the southern oscillation index. Nature 384:252–255

    CAS  Google Scholar 

  • Tannenbaum MG, Pivorun EB (1984) Differences in daily torpor patterns among three southeastern species of Peromyscus. J Comp Physiol B 154:233–236

    Article  Google Scholar 

  • Tannenbaum MG, Pivorun EB (1988) Seasonal study of daily torpor in Southeastern Peromyscus maniculatus and Peromyscus leucopus from mountains and foothills. Physiol Zool 61(1):10–16

    Google Scholar 

  • Tucker VA (1966) Diurnal torpor and its relation to food consumption and weight changes in the California pocket mouse Perognathus californicus. Ecology 47(2):245–252

    Google Scholar 

  • Vickery WL, Millar JS (1984) The energetics of huddling by endotherms. Oikos 43:88–93

    Google Scholar 

  • Vogt FD, Kakoosa P (1993) The influence of nest-sharing on the expression of daily torpor in the white-footed mouse. Can J Zool 71:1297–1302

    Google Scholar 

  • Vogt FD, Lynch GR (1982) Influence of ambient temperature, nest availability, huddling and daily torpor on energy expenditure in the white-footed mouse Peromyscus leucopus. Physiol Zool 55:56–63

    Google Scholar 

  • Wang LCH, Lee TF (2000) Perspectives on metabolic suppression during mammalian hibernation and daily torpor. In: Heldmaier G, Klingenspor M, Klaus S (eds) Life in the cold. 11th Internationnal Hibernation Symposium. Springer, Berlin Heidelberg New York, pp 149–158

  • Wang LCH, Wolowyk MW (1988) Torpor in mammals and birds. Can J Zool 66:133–137

    CAS  Google Scholar 

  • Withers KW, White DH, Billingsley J (2000) Torpor in the carnivorous marsupial Sminthopsis macroura: effects of food quality and quantity. In: Heldmaier G, Klingenspor M, Klaus S (eds) Life in the cold. 11th Internationnal Hibernation Symposium. Springer, Berlin Heidelberg New York, pp 128–137

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Séguy.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Séguy, M., Perret, M. Factors affecting the daily rhythm of body temperature of captive mouse lemurs (Microcebus murinus). J Comp Physiol B 175, 107–115 (2005). https://doi.org/10.1007/s00360-004-0467-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0467-8

Keywords

Navigation