Skip to main content

Advertisement

Log in

Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Melatonin is an effective antioxidant, immunostimulant, gonadal maturating regulator and antistress indoleamine that may be potentially useful for fish farmers. We have explored two possible ways of increasing plasma melatonin levels through the diet: direct melatonin supplementation (ME diet) and supplementation with the melatonin precursor tryptophan (TRP diet). To this end, a group of sea bass was fed a commercial diet (STD diet) at a regular time for 16 days, after which plasma, intestine, and bile samples were taken at four different time points: 120 min before, and 15, 180 and 480 min after feeding. Locomotor activity, intestinal and biliary melatonin, and plasma melatonin, serotonin and cortisol levels were measured. This same sampling process and analyses were also carried out after feeding sea bass TRP diet or ME diet for 1 week. Our results show that melatonin, but not tryptophan supplementation of the diet increases plasma, intestine and bile levels of melatonin. Plasma serotonin levels, on the other hand, were increased by dietary tryptophan, but not by melatonin, confirming the availability of supplemented tryptophan for serotonin synthesis. Both treatments were equally effective in reducing the high cortisol levels observed with the STD diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TRP diet:

Tryptophan diet

ME diet:

Melatonin diet

STD diet:

Standard diet

References

  • Begout Anras ML (1995) Demand-feeding behaviour of sea bass kept in ponds: diel and seasonal patterns, and influences of environmental factors. Aquac Int 3:186–195

    Article  Google Scholar 

  • Bubenik GA (2002) Review: gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47:2336–2348

    Article  PubMed  CAS  Google Scholar 

  • Ekmekcioglu C (2006) Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 60:97–108

    Article  PubMed  CAS  Google Scholar 

  • Esquifino AI, Pandi-Perumal SR, Cardinali DP (2004) Circadian organization of the immune response: a role for melatonin. Clin Immunol 4:423–433

    CAS  Google Scholar 

  • Esteban S, Nicolaus C, Garmundi A, Rial RV, Rodríguez AB, Ortega E, Barriga Ibars C (2004) Effect of orally administered l-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Mol Cell Biochem 267:39–46

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R, Poeggeler B (2003) Non vertebrate melatonin. J Pineal Res 34:233 241

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R, Pandi-Peruman SR, Cardinali DP (2006) Melatonin. J Biocel 38:313–316

    CAS  Google Scholar 

  • Hernández-Rauda R, Miguez JM, Ruibal C, Aldegunde M (2000) Effects of melatonin on dopamine metabolism in the hypothalamus and the pituitary of the rainbow trout, Oncorhynchus mykiss. J Exp Zool 287:440–444

    Article  PubMed  Google Scholar 

  • Huether G, Poeggeler B, Reimer A, George A (1992) Effect of tryptophan administration on circulating melatonin levels in chicks and rats: evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci 51:945–953

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24:433–456

    Article  PubMed  CAS  Google Scholar 

  • Konakchieva R, Mitev Y, Almeida O, Patchev VK (1998) Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology 67:171–180

    Article  PubMed  CAS  Google Scholar 

  • Koopmans SJ, Ruis M, Dekker R, Diepen H, Korte M, Mroz Z (2005) Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs. Physiol Behav 85:469–478

    Article  PubMed  CAS  Google Scholar 

  • Lepage O, Tottmar O, Winberg S (2002) Elevated dietary intake of l-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J Exp Biol 205:3679–3687

    PubMed  CAS  Google Scholar 

  • Lepage O, Molina-Vílchez I, Pottinger T, Winberg S (2003) Time-course of the effect of dietary l-tryptophan on plasma cortisol levels in rainbow trout Oncorhynchus mykiss. J Exp Biol 206:3589–3599

    Article  PubMed  Google Scholar 

  • Lepage O, Larson ET, Mayer I, Winberg S (2005a) Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J Pineal Res 38:264–271

    Article  CAS  Google Scholar 

  • Lepage O, Larson ET, Mayer I, Winberg S (2005b) Serotonin, but not melatonin, plays a role in shaping dominant-subordinate relationships and aggression in rainbow trout. Horm Behav 48:233–242

    Article  CAS  Google Scholar 

  • Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25:177–195

    Article  PubMed  CAS  Google Scholar 

  • Madrid JA, Boujard T, Sánchez-Vázquez FJ (2001) Feeding rhythms. In: Houlihan D, Jobling M, Boujard T (eds) Food intake in fish. Blackwell Science, Oxford, pp 189–215

    Google Scholar 

  • Markus CR, Olivier B, Pannhuysen G, Tuiten A, Van der Gugten J, Alles MS, Tuiten A, Westenberg GM, Fekkes D, Koppeschaar H, de Haan EEHF (2000a) The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentrations, and improves mood under stress. Am J Clin Nutr 71:1536–1544

    CAS  Google Scholar 

  • Markus CR, Pannhuysen G, Tuiten A, Koppeschaar H (2000b) Effects of food on cortisol and mood in vulnerable subjects under controllable and uncontrollable stress. Physiol Behav 70:333–342

    Article  CAS  Google Scholar 

  • Messner M, Huether G, Lorf T, Ramadori G, Schwörer H (2001) Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci 69:543–551

    Article  PubMed  CAS  Google Scholar 

  • Murakami N, Kawano T, Nakahara K, Nasu T, Shiota K (2001) Effect of melatonin on circadian rhythm, locomotor activity and body temperature in the intact house sparrow, Japanese quail and owl. Brain Res 889:220–224

    Article  PubMed  CAS  Google Scholar 

  • Overli O, Korzan WJ, Larson ET, Winberg S, Lepage O, Pottinger TG, Renner KJ (2004) Summers, C.H. Behavioral and neuroendocrine correlates of displaced aggression in trout. Horm Behav 45:324–329

    Article  PubMed  CAS  Google Scholar 

  • Partridge WM, Mietus LJ (1980) Transport of albumin-bound melatonin through the blood-brain barrier. J Neurochem 34:1761–1763

    Article  Google Scholar 

  • Poeggeler B, Cornélissen G, Huether G, Hardeland R, Józsa R, Zeman M, Stebelova K, Oláh A, Bubenik G, Pan W, Otsuka K, Schwartzkopff O, Bakken EE, Halberg F (2005) Chronomics affirm extending scope of lead in phase of duodenal vs. pineal circadian melatonin rhythms. Biomed Pharmacother 59:220–224

    Article  Google Scholar 

  • Porter M, Randall C, Magwood S, Futter W, Bromage N (2000) Photoperiod, melatonin and the control of maturation in farmed fish. Comp Biochem Phys A 126:117

    Google Scholar 

  • Rao NVA, Raza B, Prasad JK, Razi SS, Gottardo L, Ahmad MF, Nussdorfer GG (2001) Melatonin decreases glucocorticoid blood concentration in the rat and palm squirrel, acting directly on the adrenal gland. Biomed Res 22:115–117

    CAS  Google Scholar 

  • Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Rotllant J, Ruane NM, Caballero MJ, Montero D, Tort L (2003) Response to confinement in sea bass (Dicentrarchus labrax) is characterised by an increased biosynthetic capacity of interrenal tissue with no effect on ACTH sensitivity. Comp Biochem Phys A 136:613–620

    Article  CAS  Google Scholar 

  • Stephan FK (1997) Calories affect zeitgeber properties of the feeding entrained circadian oscillator. Physiol Behav 62:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Sprenger J, Hardeland R, Fuhrberg B, Han S-Z (1999) Melatonin and other 5-methoxylated indoles in yeast: presence in high concentrations and dependence on tryptophan availability. Cytologia 64:209–213

    CAS  Google Scholar 

  • Tan D, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ (1999) High physiological levels of melatonin in the bile of mammals. Life Sci 665:2523–2529

    Article  Google Scholar 

  • Tintos A, Míguez JM, Mancera JM, Soengas JL (2006) Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. J Fish Biol 68:251–263

    Article  CAS  Google Scholar 

  • Vera LM, López-Olmeda JF, Bayarri MJ, Madrid JA, Sánchez-Vázquez FJ (2005) Influence of light intensity on plasma melatonin and locomotor activity rhythms in tench. Chronobiol Int 22:67–78

    PubMed  CAS  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Winberg S, Overli O, Lepage O (2001) Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary l-tryptophan. J Exp Biol 204:3867–3876

    PubMed  CAS  Google Scholar 

  • Xu D, Li JC, Ma KC, Wang M (1995) Effects of melatonin on hypothalamic gamma-aminobutyric acid, aspartic acid, glutamic acid, beta-endorphin and serotonin levels in mice. Biol Signals 4:225–231

    PubMed  CAS  Google Scholar 

  • Yánez J, Meissl H (1995) Secretion of methoxyindoles from trout pineal organs in vitro: indication for a paracrine melatonin feedback. Neurochem Int 27:195–200

    Article  PubMed  Google Scholar 

  • Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903:263–268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by CICYT (AGL2004-08137-CO4-02/ACU to J.A. Madrid) and by a grant from Fundación Grupo Eroski to M.J. Herrero. The authors are grateful to Javier Sánchez Alarcón, Ana Beatriz Rodríguez and Carmen Barriga of the University of Extremadura and to Adrián Tintos of University of Vigo for kindly providing technical support. The authors also wish to thank the staff of the IMIDA Center for Marine Research (San Pedro del Pinatar) for their valuable help. Special thanks to J.L. Soengas, whose comments improved the manuscript. The experiments described comply with the Principles of Animal Care (publication No. 86-23, revised 1985) of the National Institute of Health, and also with the Spanish current legislation (RD 1201/2005) on the use of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Madrid.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, M.J., Martínez, F.J., Míguez, J.M. et al. Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol B 177, 319–326 (2007). https://doi.org/10.1007/s00360-006-0131-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0131-6

Keywords

Navigation