Skip to main content
Log in

Differential antipredatory responses in the tuco-tuco (Ctenomys talarum) in relation to endogenous and exogenous changes in glucocorticoids

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Glucocorticoids participate in the behavioral and physiological responses generated under stressful circumstances coming from different sources—physical and/or psychological. In mammals, the increases of these hormones are mediated by the activation of the hypothalamic–pituitary–adrenal axis. This response occurs after exposure to novel and unpredictable situations that lead to the loss of homeostasis, for example, a direct encounter with predators or their cues. However, the relationship between the physiological and behavioral responses is still a complex issue in vertebrates. We evaluate the effects of an experimental manipulation of glucocorticoid levels on the generation of the behavioral and physiological response to stress by predation in the subterranean rodent C. talarum. We found that when tuco-tucos encountered predator cues—fur odor, and largely, immobilization—they responded physiologically by secreting cortisol. This response was accompanied by an associated behavioral response. However, when the increase in plasma cortisol originated exogenously by the injection of cortisol, a behavioral response was not observed. Finally, inhibition of glucocorticoids’ synthesis was effective in weakening the behavioral effects produced by immobilization. In conclusion, in tuco-tucos, predator cues act as stress factors that trigger differential increases in plasma cortisol and a behavioral response associated with the appearance of anxiety states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

GCs:

Glucocorticoids

HPA:

Hypothalamic-pituitary-adrenal axis

VNO:

Vomeronasal organ

References

  • Antinuchi D, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Mamm Biol 57:163–168

    Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ, Hayes RA, McGregor IS (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144

    PubMed  Google Scholar 

  • Apfelbach R, Parsons MH, Soini HA, Novotny MV (2015) Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species? Front Neurosci 9:263

    PubMed  PubMed Central  Google Scholar 

  • Arlet ME, Isbell LA (2009) Variation in behavioral and hormonal responses of adult male gray-cheeked mangabeys (Lophocebus albigena) to crowned eagles (Stephanoaetus coronatus) in Kibale National Park, Uganda. Behav Ecol Sociobiol 63:491–499

    Google Scholar 

  • Armario A (2006) The hypothalamic–pituitary–adrenal axis: what can it tell us about stressors? CNS Neurol Disord Drug Targets 5:485–501

    PubMed  Google Scholar 

  • Bauer CM, Hayes LD, Ebensperger LA, Ramírez-Estrada J, León C, Davis GT, Romero LM (2015) Maternal stress and plural breeding with communal care affect development of the endocrine stress response in a wild rodent. Horm Behav 75:18–24

    CAS  PubMed  Google Scholar 

  • Bian JH, Du SY, Wu Y, Cao YF, Nie XH, He H, You ZB (2015) Maternal effects and population regulation: maternal density-induced reproduction suppression impairs offspring capacity in response to immediate environment in root voles Microtus oeconomus. J Anim Ecol 84:326–336

    PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2003) Conditioning and residual emotionality effects of predator stimuli: some reflections on stress and emotion. Prog Neuro Psychopharmacol Biol Psychiatry 27:1177–1185

    Google Scholar 

  • Boonstra R, Hik D, Singleton GR, Tinnikov A (1998) The impact of predator-induced stress on the snowshoe hare cycle. Ecol Monogr 68:371–394

    Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2014) Effects of acute and chronic exposure to predatory cues on spatial learning capabilities in the subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae). Ethology 120:563–576

    Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2015) Short term anxiety response of the subterranean rodent Ctenomys talarum to odors from a predator. Physiol Behav 151:596–603

    CAS  PubMed  Google Scholar 

  • Brachetta V, Schleich CE, Zenuto RR (2016) Source odor, intensity, and exposure pattern affect antipredatory responses in the Subterranean Rodent Ctenomys talarum. Ethology 122:923–936

    Google Scholar 

  • Brachetta V, Schleich CE, Cutrera AP, Merlo JL, Kittlein MJ, Zenuto RR (2018) Prenatal predatory stress in a wild species of subterranean rodent: do ecological stressors always have a negative effect on the offspring? Dev Psychobiol 60:567–581

    CAS  PubMed  Google Scholar 

  • Busch C, Malizia AI, Scaglia OA, Reig OA (1989) Spatial distribution and attributes of a population of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 70:204–208

    Google Scholar 

  • Busch C, Antinuchi D, Del Valle J, Kittlein M, Malizia A, Vassallo A, Zenuto R (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life Underground: The Biology of Subterranean Rodents. The University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Calvo N, Volosin M (2001) Glucocorticoid and mineralocorticoid receptors are involved in the facilitation of anxiety-like response induced by restraint. Neuroendocrinol 73:261–271

    CAS  Google Scholar 

  • Canepuccia A (2005) Efectos del incremento de las precipitaciones sobre la estructura comunitaria de un pastizal del Sudeste de la region Pampeana, Argentina. Doctoral thesis. Univ. Nacional de Mar del Plata

  • Canoine V, Hyden TJ, Rowe K, Goymann W (2002) The stress response of European stonechats depends on the type of stressor. Behav 139:1303–1311

    Google Scholar 

  • Cavigelli SA (1999) Behavioural patterns associated with faecal cortisol levels in free ranging female ring-tailed lemurs, Lemur catta. Anim Behav 57:935–944

    CAS  PubMed  Google Scholar 

  • Clinchy M, Zanette L, Boonstra R, Wingfield JC, Smith JNM (2004) Balancing food and predator pressure induces chronic stress in songbirds. Proc R Soc Lond B 271:2473–2479

    Google Scholar 

  • Cockrem JF, Silverin B (2002) Variation within and between birds in corticosterone responses of great tits (Parus major). Gen Comp Endocrinol 125:197–206

    CAS  PubMed  Google Scholar 

  • Creel S (2005) Dominance, aggression, and glucocorticoid levels in social carnivores. J Mammal 86:255–264

    Google Scholar 

  • Creel S, Winnie J Jr, Christianson D (2009) Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. Proc Natl Acad Sci USA 106:12388–12393

    CAS  PubMed  Google Scholar 

  • Crossin GT, Love OP, Cooke SJ, Williams TD (2016) Glucocorticoid manipulations in free-living animals: considerations of dose delivery, life-history context and reproductive state. Funct Ecol 30:116–125

    Google Scholar 

  • Cutrera AP, Zenuto RR, Luna F, Antenucci CD (2010) Mounting a specific immune response increases energy expenditure of the subterranean rodent Ctenomys talarum (tuco tuco): implications for intra and interspecific variation in immunological traits. J Exp Biol 213:715–724

    CAS  PubMed  Google Scholar 

  • Davis DR, Gabor CR (2015) Behavioral and physiological antipredator responses of the San Marcos salamander, Eurycea nana. Physiol Behav 139:145–149

    CAS  PubMed  Google Scholar 

  • Davis AK, Maney DL (2008) The use of glucocorticoid hormones or leucocyte profiles to measure stress in vertebrates: what’s the difference? Methods Ecol Evol 8(9):1556–1568

    Google Scholar 

  • Davis AK, Maney DL (2018) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772

    Google Scholar 

  • Dickens MJ, Romero LM (2013) A consensus endocrine profile for chronically stressed wild animals does not exist. Gen Comp Endocrinol 191:177–189

    CAS  PubMed  Google Scholar 

  • Fendt M, Endres T, Lowry CA, Apfelbach R, McGregor IS (2005) TMT induced autonomic and behavioral changes and the neural basis of its processing. Neurosci Biobehav Rev 29:1145–1156

    CAS  PubMed  Google Scholar 

  • Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci USA 108:11235–11240

    CAS  PubMed  Google Scholar 

  • Fonner K (2015) Testing the predation stress hypothesis: behavioural and hormonal responses to predator cues in Allegheny Mountain dusky salamanders. Behaviour 152:797–819

    Google Scholar 

  • Hegab IM, Kong S, Yang S, Mohamaden WI, Wei W (2015) The ethological relevance of predator odors to induce changes in prey species. Acta Ethol 18:1–9

    Google Scholar 

  • Hik DS, Mc Coll CJ, Boonstra R (2001) Why are Arctic ground squirrels more stressed in the boreal forest than in alpine meadows? Ecoscience 8:275–288

    Google Scholar 

  • Holmes A, Parmigiani S, Ferrari PF, Palanza P, Rodgers RJ (2000) Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 71:509–516

    CAS  PubMed  Google Scholar 

  • Johnstone CP, Reina RD, Lill A (2012) Interpreting indices of physiological stress in freeliving vertebrates: a review. J Comp Physiol B 182:861–879

    PubMed  Google Scholar 

  • Jones BC, Smith AD, Bebus SE, Schoech SJ (2016) Two seconds is all it takes: European starlings (Sturnus vulgaris) increase levels of circulating glucocorticoids after witnessing a brief raptor attack. Horm Behav 78:72–78

    CAS  PubMed  Google Scholar 

  • Marin MT, Cruz FC, Planeta CS (2007) Chronic 615 restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol Behav 90(1):29–35

    CAS  PubMed  Google Scholar 

  • Mashoodh R, Sinal CJ, Perrot-Sinal TS (2009) Predation threat exerts specific effects on rat maternal behaviour and anxiety-related behaviour of male and female offspring. Physiol Behav 96:693–702

    CAS  PubMed  Google Scholar 

  • Masini CV, Sauer S, Campeau S (2005) Ferret odor as a processive stress model in rats: neurochemical, behavioral, and endocrine evidence. Behav Neurosci 119:280–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo JM (2007) Ecological and hormonal correlates of antipredator behavior in adult Belding’s ground squirrels (Spermophilus beldingi). Behav Ecol Sociobiol 62:37–49

    PubMed  PubMed Central  Google Scholar 

  • Monclús R, Rödel HG, von Holst D, de Miguel J (2005) Behavioural and physiological responses of naïve rabbits to predator odour. Anim Behav 70:753–761

    Google Scholar 

  • Monclús R, Rödel HG, von Holst D (2006) Fox odour increases vigilance in European rabbits: a study under semi-natural conditions. Ethology 112:1186–1193

    Google Scholar 

  • Monclús R, Palomares F, Tablado Z, Martínez-Fontírbel A, Palme R (2009) Testing the threat-sensitive predator avoidance hypothesis: physiological responses and predator pressure in wild rabbits. Oecol 158:615–623

    Google Scholar 

  • Müller C, Jenni-Eiermann S, Jenni L (2011) Heterophils/lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct Ecol 25:566–576

    Google Scholar 

  • Muñoz-Abellán C, Andero R, Nadal R, Armario A (2008) Marked dissociation between hypothalamicpituitary- adrenal activation and long-term behavioral effects in rats exposed to immobilization or cat odor. Psychoneuroendocrinology 33:1139–1150

    PubMed  Google Scholar 

  • Narayan E, Cockrem JF, Hero JM (2013) Are baseline and short-term corticosterone stress responses in free-living amphibians repeatable? Comp Biochem Physiol A Mol Integr Physiol 164:21–28

    CAS  PubMed  Google Scholar 

  • Navarro-Castilla A, Barja I (2014) Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemus sylvaticus)? Behav Ecol Sociobiol 68:1505–1512

    Google Scholar 

  • Newman AEM, Zanette LY, Clinchy M, Goodenough N, Soma KK (2013) Stress in the wild: chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird. Stress 16(3):363–367

    CAS  PubMed  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The 647 vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellow S, Chopin P, File S, Briley M (1985) Validation of open: closed arm entries in an elevated plus maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    CAS  PubMed  Google Scholar 

  • Pride RE (2005) Foraging success, agonism, and predator alarms: behavioral predictors of cortisol in Lemur catta. Int J Primatol 26:295–319

    Google Scholar 

  • Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86:225–235

    Google Scholar 

  • Rodgers RJ, Dalvi A (1997) Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev 21:801–810

    CAS  PubMed  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    PubMed  Google Scholar 

  • Romero M, Dickens M, Cyr N (2009) The Reactive Scope Model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    PubMed  Google Scholar 

  • Rotllant D, Ons S, Carrasco J, Armario A (2002) Evidence that metyrapone can act as a stressor: effect on pituitary–adrenal hormones, plasma glucose and brain c-fos induction. Eur J Neurosci 16:693–700

    PubMed  Google Scholar 

  • Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioural endocrinology. MIT Press, Cambridge, pp 287–324

    Google Scholar 

  • Sapolsky RM (2002) Endocrinology of the stress response. In: Becker JB, Breedlove SM, Crews D, McCarthy M (eds) Behavioral endocrinology, 2nd edn. MIT Press, Cambridge, pp 409–450

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Schleich CE, Zenuto RR, Cutrera AP (2015) Immune challenge but not dietary restriction affects spatial learning in the wild subterranean rodent Ctenomys talarum. Physiol Behav 139:150–156

    CAS  PubMed  Google Scholar 

  • Sheriff MJ, Bosson CO, Krebs CJ, Boonstra R (2009) A non- invasive technique for measuring fecal cortisol metabolites in snowshoe hares (Lepus americanus). J Comp Physiol B 179:305–313

    CAS  PubMed  Google Scholar 

  • Sheriff MJ, Krebs CJ, Boonstra R (2011) From process to pattern: how fluctuating predation risk impacts the stress axis of snowshoe hares during the 10-year cycle. Oecol 166:593–605

    Google Scholar 

  • Sikes, The Animal Care and Use Committee of the American Society of Mammalogists (2016) Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 97(3):663–688

  • Silverin B (1998) Behavioural and hormonal responses of the pied fly-catcher to environmental stressors. Anim Behav 55:1411–1420

    CAS  PubMed  Google Scholar 

  • Smith AS, Lieberwirth C, Wang Z (2013) Behavioral and physiological responses of female prairie voles (Microtus ochrogaster) to various stressful conditions. Stress 16(5):531–539

    PubMed  PubMed Central  Google Scholar 

  • Sopinka NM, Patterson LD, Redfern JC, Pleizier NK, Belanger CB, Midwood JD, Crossin GT, Cooke SJ (2015) Manipulating glucocorticoids in wild animals: basic and applied perspectives. Conserv Physiol. https://doi.org/10.1093/conphys/cov031

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas O (1898) Description of two Argentine rodents. Annu Mag Nat Hist Ser 7(1):283–286

    Google Scholar 

  • Vassallo A, Kittlein M, Busch C (1994) Owl predation on two sympatric species of tuco tucos (Rodentia: Octodontidae). J Mammal 75:725–732

    Google Scholar 

  • Vera F, Zenuto RR, Antenucci CD (2008) Decreased glucose tolerance but normal blood glucose levels in the field in the caviomorph rodent Ctenomys talarum: the role of stress and physical activity. Comp Biochem Physiol Part A Mol Integr Physiol Behav Sci 151:232–238

    Google Scholar 

  • Vera F, Antenucci CD, Zenuto RR (2011) Cortisol and corticosterone exhibit different seasonal variation and responses to acute stress and captivity in tuco-tucos (Ctenomys talarum). Gen Comp Endocrinol 170:550–557

    CAS  PubMed  Google Scholar 

  • Vera F, Zenuto RR, Antenucci CD (2012) Differential responses of cortisol and corticosterone to adrenocorticotropic hormone (ACTH) in a subterranean rodent (Ctenomys talarum). J Exp Zool A Ecol Genet Physiol 317:173–184

    CAS  PubMed  Google Scholar 

  • Vera F, Antenucci CD, Zenuto RR (2018) Different regulation of cortisol and corticosterone in the subterranean rodent Ctenomys talarum: responses to dexamethasone, angiotensin II, potassium, and diet. Gen Comp Endocrinol. https://doi.org/10.1016/j.ygcen.2018.05.019

    Article  PubMed  Google Scholar 

  • Walker SE, Zanoletti O, Guillot de Suduiraut I, Sandi C (2017) Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety related behaviors. Psychoneuroendocrinology 84:1–10

    CAS  PubMed  Google Scholar 

  • Wingfield JC (2005) The concept of allostasis: coping with a capricious environment. J Mammal 86:248–254

    Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    CAS  PubMed  Google Scholar 

  • Wingfield JC, Breuner C, Jacobs J, Lynn S, Maney D, Ramenofsky M, Richardson R (1998) Ecological bases of hormone-behavior interactions: the “Emergency Life History Stage”. Am Zool 38:191–206

    CAS  Google Scholar 

  • Yin B, Yang S, Shang G, Wei W (2017) Effects of predation risk on behavior, hormone levels, and reproductive success of plateau pikas. Ecosphere 8(1):e01643. https://doi.org/10.1002/ecs2.1643

    Article  Google Scholar 

  • Ylönen H, Eccard JA, Jokinen I, Sundell J (2006) Is the antipredatory response in behaviour reflected in stress measured in faecal corticosteroids in a small rodent? Behav Ecol Sociobiol 60:350–358

    Google Scholar 

Download references

Acknowledgements

In this study, the capture, handling, and maintenance in captivity of all animals were conducted in accordance with the guidelines approved by the American Society of Mammalogists (Sikes et al. 2016) and the current laws of Argentina. Once the Institutional Committee for the Care and Use of Laboratory Animals (CICUAL) of the FCEyN of the UNMdP was formed, the approval of the protocols used was processed (CICUAL 2555-06-14 RD 141/15).

Funding

Funded by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0292) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Brachetta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brachetta, V., Schleich, C.E. & Zenuto, R.R. Differential antipredatory responses in the tuco-tuco (Ctenomys talarum) in relation to endogenous and exogenous changes in glucocorticoids . J Comp Physiol A 206, 33–44 (2020). https://doi.org/10.1007/s00359-019-01384-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-019-01384-8

Keywords

Navigation