Skip to main content
Log in

Magnetoreception: activation of avian cryptochrome 1a in various light conditions

  • Original paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The avian magnetic inclination compass is based on radical pair processes, with cryptochrome (Cry) assumed to form the crucial radical pairs; it requires short-wavelength light from UV to green. Under high-intensity narrow-band lights and when yellow light is added, the magnetic compass is disrupted: migratory birds no longer prefer their migratory direction, but show other orientation responses. The candidate receptor molecule Cry1a is located in the shortwavelength-sensitive SWS1 cone photoreceptors in the retina. The present analysis of avian retinae after the respective illuminations showed that no activated Cry1a was present under 565 nm green light of medium and high intensity, and hardly any under high intensity 502 nm turquoise, whereas we found activated Cry1a at all three tested intensities of 373 nm UV and 424 nm blue light. Activated Cry1a also was found when 590 nm yellow light was added to low-intensity light of the four colors; yet these light combinations result in impaired magnetic orientation. This indicates that the disruption of the magnetic compass does not occur at the receptor level in the retina, but at higher processing stages, where the unnatural, almost monochromatic or bichromatic illumination causes yet unknown responses that interfere with the inclination compass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(modified after Müller and Ahmad 2011; see also Nießner et al. 2013)

Similar content being viewed by others

References

  • Bailey MJ, Chong NW, Xiong J, Cassone VM (2002) Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors. FEBS Lett 513:169–174

    Article  CAS  Google Scholar 

  • Beason RC, Semm P (1987) Magnetic responses of the trigeminal system of the bobolink (Dolichonyx oryzivorus). Neurosci Lett 80:229–234

    Article  CAS  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GTJ, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  Google Scholar 

  • Denzau S, Nießner C, Rogers LJ, Wiltschko W (2013) Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus). J Exp Biol 216:3143–3147

    Article  Google Scholar 

  • Engels E, Schneider N-L, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H (2014) Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:353–356

    Article  CAS  Google Scholar 

  • Freire R, Munro UH, Rogers LJ, Wiltschko R, Wiltschko W (2005) Chickens orient using a magnetic compass. Curr Biol 15:R620–R621

    Article  CAS  Google Scholar 

  • Haque R, Chaurasia SS, Wessel JH III, Iuvone PM (2002) Dual regulation of cryptochrome I mRNA expression in chicken retina by light and circadian oscillations. Neuroreport 13:2247–2251

    Article  CAS  Google Scholar 

  • Henbest KB, Kukura CT, Rodgers CT, Hore PJ, Timmel CR (2004) Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J Am Chem Soc 126:8102–8103

    Article  CAS  Google Scholar 

  • Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc Natl Acad Sci USA 107:9394–9399

    Article  CAS  Google Scholar 

  • Kattnig DR (2017) Radical-pair based magnetoreception amplified by radical scavenging: resilience of spin relaxation. J Phys Chem B 121:10215–10227

    Article  CAS  Google Scholar 

  • Kavokin K, Chernetsov N, Pakomov A, Bojarinova J, Kobylkov D, Namozov B (2014) Magnetic orientation in garden warblers (Sylvia borin) under 1.4 MHz radiofrequency field. J R Soc Interface 11:20140451

    Article  Google Scholar 

  • Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof HJ (2009) Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Front Zool 6:25

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Heyers D, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R811–R826

    Article  Google Scholar 

  • Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS (2017) Vertebrate cryptochromes are vestigial flavoproteins. Sci Rep 7:44906

    Article  CAS  Google Scholar 

  • Lee AA, Lau JCS, Hodgen HJ, Biskup T, Kattnig DR, Hore PJ (2014) Alternative radical pairs for cryptochrome-based magnetoreception. J R Soc Interface 11:210131063

    Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588

    Article  Google Scholar 

  • Muheim R, Sjöberg S, Pinzon-Rodriguez A (2016) Polarized light modulates light-dependent magnetic orientation in birds. Proc Natl Acad Sci USA 113:1654–1659

    Article  CAS  Google Scholar 

  • Müller P, Ahmad M (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin–superoxide radical pair consistent with magnetoreception. J Biol Chem 286:21033–21040

    Article  Google Scholar 

  • Nießner C, Winklhofer M (2017) Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome. J Comp Physiol A 203:499–508

    Article  Google Scholar 

  • Nießner C, Denzau S. Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6:20091

    Article  Google Scholar 

  • Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R (2013) Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface 10:0130618

    Article  Google Scholar 

  • Nießner C, Denzau S, Peichl L, Wiltschko W, Wiltschko R (2014) Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle. J Exp Biol 217:4221–4224

    Article  Google Scholar 

  • Pakomov A, Bojarinova J, Cherbunin R, Chetverikova R, Grigoryev PS, Kavokin K, Kobylkov D, Lubkoskaja R, Chernetsov N (2017) Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J R Soc Interface 14:20170364

    Article  Google Scholar 

  • Pinzon-Rodriguez A, Muheim R (2017) Zebra finches have a light-dependent magnetic compass similar to migratory birds. J Exp Biol 220:1202–1209

    Article  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  CAS  Google Scholar 

  • Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180

    Article  CAS  Google Scholar 

  • Ritz T, Wiltschko R, Hore PJ, Rodgers TC, Stapput K, Thalau P. Timmel CR, Wiltschko W (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 96:3451–3457

    Article  CAS  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625

    Article  CAS  Google Scholar 

  • Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92:86–90

    Article  CAS  Google Scholar 

  • Voss J, Keary N, Bischof HJ (2007) The use of the geomagnetic field for short distance orientation in zebra finches. Neuroreport 18:1053–1057

    Article  Google Scholar 

  • Watari R, Yamaguch C, Zemba W, Kubo Y, Okano K (2012) Light-dependent structural change in chicken retinal cryptochrome 4. J Biol Biochem 287:42634–42641

    CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (2001) Clock-shift experiments with homing pigeons: a compromise between solar and magnetic information? Behav Ecol Sociobiol 49:393–400

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 4:221–242

    Article  CAS  Google Scholar 

  • Wiltschko R, Ritz T, Stapput K, Thalau P, Wiltschko W (2005) Two different types of light-dependent responses to magnetic fields in birds. Curr Biol 15:1518–1523

    Article  CAS  Google Scholar 

  • Wiltschko R, Stapput K, Bischof HJ, Wiltschko W (2007) Light-dependent magnetoreception in birds: increasing intensity of monochromatic light changes the nature of the response. Front Zool 4:5

    Article  Google Scholar 

  • Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010a) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 7(Suppl 2):S163–S178

    Article  Google Scholar 

  • Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010b) The role of the magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:534–1538

    Article  Google Scholar 

  • Wiltschko R, Dehe L, Gehring D, Thalau P, Wiltschko W (2013) Interaction between the visual and the magnetoreception system: different effects of bi-chromatic light regimes on the directional behavior of migratory birds. J Physiol (Paris) 107:137–146

    Article  Google Scholar 

  • Wiltschko R, Gehring D, Denzau S, Nießner C, Wiltschko W (2014) Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle. J Exp Biol 217:4225–4228

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Munro U (2000) Light-dependent magnetoreception in birds: does directional information change with light intensity? Naturwissenschaften 87:36–40

    Article  CAS  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2003) Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity. Proc R Soc Lond B 270:2133–2140

    Article  Google Scholar 

  • Wiltschko W, Gesson M, Stapput K, Wiltschko R (2004) Light-dependent magnetoreception in birds: interaction of at least two different receptors. Naturwissenschaften 91:130–134

    Article  CAS  Google Scholar 

  • Wiltschko W, Freire R, Munro U, Ritz T, Rogers L, Thalau P, Wiltschko R (2007) The magnetic compass of domestic chickens, Gallus gallus. J Exp Biol 210:2300–2310

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2009) Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc R Soc B 276:2227–2232

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the Deutsche Forschungsgemeinschaft (Grant Wi 988/8-2 and 8-3 to RW). We sincerely thank M. Ahmad, Université Pierre et Marie Curie, Paris, for helpful advice. The study was performed in accordance with the rules and regulations of animal welfare in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswitha Wiltschko.

Ethics declarations

Conflict of interest

The authors confirm that they do not have any conflict of interest.

Ethical approval

The study was performed according to the rules and regulations of animal welfare in Germany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nießner, C., Denzau, S., Peichl, L. et al. Magnetoreception: activation of avian cryptochrome 1a in various light conditions. J Comp Physiol A 204, 977–984 (2018). https://doi.org/10.1007/s00359-018-1296-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-018-1296-7

Keywords

Navigation