Skip to main content
Log in

Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Diverse animals communicate using multicomponent signals. How a receiver’s central nervous system integrates multiple signal components remains largely unknown. We investigated how female green treefrogs (Hyla cinerea) integrate the multiple spectral components present in male advertisement calls. Typical calls have a bimodal spectrum consisting of formant-like low-frequency (~0.9 kHz) and high-frequency (~2.7 kHz) components that are transduced by different sensory organs in the inner ear. In behavioral experiments, only bimodal calls reliably elicited phonotaxis in no-choice tests, and they were selectively chosen over unimodal calls in two-alternative choice tests. Single neurons in the inferior colliculus of awake, passively listening subjects were classified as combination-insensitive units (27.9%) or combination-sensitive units (72.1%) based on patterns of relative responses to the same bimodal and unimodal calls. Combination-insensitive units responded similarly to the bimodal call and one or both unimodal calls. In contrast, combination-sensitive units exhibited both linear responses (i.e., linear summation) and, more commonly, nonlinear responses (e.g., facilitation, compressive summation, or suppression) to the spectral combination in the bimodal call. These results are consistent with the hypothesis that nonlinearities play potentially critical roles in spectral integration and in the neural processing of multicomponent communication signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Averaging upper and lower bounds differing by 2.5 dB on a linear scale yields threshold estimates that are 0.1775 dB higher than those averaged on a dB scale.

  2. Note that our definition of MTR units differs from the use of this designation by Fuzessery and Feng (1982, 1983), who used it to refer to units that exhibited facilitated responses to combinations of multiple tones.

Abbreviations

ANOVA:

Analysis of variance

BEF:

Best excitatory frequency

CV:

Coefficient of variation

DFA:

Discriminant function analysis

FTC:

Frequency tuning curve

GABA:

Gamma-aminobutyric acid

IC:

Inferior colliculus

MTR:

Multi-tone responder

SD:

Standard deviation

SPL:

Sound pressure level

STR:

Single-tone responder

References

  • Akimov AG, Egorova MA, Ehret G (2017) Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur J Neurosci 46(3):440–459

    Article  Google Scholar 

  • Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). J Comp Psychol 124:412–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee MA, Miller CT (2016) Psychological mechanisms in animal communication, vol 5. Animal signals and communication. Springer, Berlin

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. M.I.T. Press, Cambridge

    Google Scholar 

  • Bro-Jørgensen J (2010) Dynamics of multiple signalling systems: animal communication in a world in flux. Trends Ecol Evol 25(5):292–300

    Article  PubMed  Google Scholar 

  • Bush SL, Gerhardt HC, Schul J (2002) Pattern recognition and call preferences in treefrogs (Anura: Hylidae): A quantitative analysis using a no-choice paradigm. Anim Behav 63:7–14

    Article  Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78(4):575–595

    Article  PubMed  Google Scholar 

  • Capranica RR (1965) The evoked vocal response of the bullfrog: a study of communication by sound. M.I.T. Press, Cambridge

    Google Scholar 

  • Capranica RR (1966) Vocal response of the bullfrog to natural and synthetic mating calls. J Acoust Soc Am 40:1131–1139

    Article  Google Scholar 

  • Ehret G, Capranica RR (1980) Masking patterns and filter characteristics of auditory nerve fibers in the green treefrog (Hyla cinerea). J Comp Physiol 141(1):1–12

    Article  Google Scholar 

  • Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61(2):317–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris HE, Taylor RC (2016) Mate searching animals as model systems for understanding perceptual grouping. In: Bee MA, Miller CT (eds) Psychological mechanisms in animal communication, vol 5. Animal signals and communication. Springer, New York, pp 89–118

    Chapter  Google Scholar 

  • Fitzpatrick DC, Kanwal JS, Butman JA, Suga N (1993) Combination-sensitive neurons in the primary auditory cortex of the mustached bat. J Neurosci 13(3):931–940

    CAS  PubMed  Google Scholar 

  • Fuzessery ZM (1988) Frequency tuning in the anuran central auditory system. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 253–273

    Google Scholar 

  • Fuzessery ZM, Feng AS (1982) Frequency selectivity in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. J Comp Physiol 146(4):471–484

    Article  Google Scholar 

  • Fuzessery ZM, Feng AS (1983) Mating call selectivity in the thalamus and midbrain of the leopard frog (Rana p. pipiens): single and multiunit analyses. J Comp Physiol 150(3):333–344

    Article  Google Scholar 

  • Gerhardt HC (1974) The significance of some spectral features in mating call recognition in the green treefrog (Hyla cinerea). J Exp Biol 61(1):229–241

    CAS  PubMed  Google Scholar 

  • Gerhardt HC (1975) Sound pressure levels and radiation patterns of vocalizations of some North American frogs and toads. J Comp Physiol 102(1):1–12

    Article  Google Scholar 

  • Gerhardt HC (1976) Significance of two frequency bands in long distance vocal communication in the green treefrog. Nature 261(5562):692–694

    Article  Google Scholar 

  • Gerhardt HC (1981a) Mating call recognition in the barking treefrog (Hyla gratiosa): responses to synthetic calls and comparisons with the green treefrog (Hyla cinerea). J Comp Physiol 144(1):17–25

    Article  Google Scholar 

  • Gerhardt HC (1981b) Mating call recognition in the green treefrog (Hyla cinerea): importance of two frequency bands as a function of sound pressure level. J Comp Physiol 144(1):9–16

    Article  Google Scholar 

  • Gerhardt HC (1986) Recognition of spectral patterns in the green treefrog: neurobiology and evolution. Exp Biol 45(3):167–178

    CAS  PubMed  Google Scholar 

  • Gerhardt HC (1992) Multiple messages in acoustic signals. Semin Neurosci 4:391–400

    Article  Google Scholar 

  • Gerhardt HC (1995) Phonotaxis in female frogs and toads: execution and design of experiments. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser Verlag, Basel, pp 209–220

    Chapter  Google Scholar 

  • Gerhardt HC (2001) Acoustic communication in two groups of closely related treefrogs. Adv Stud Behav 30:99–167

    Article  Google Scholar 

  • Gerhardt HC (2005) Acoustic spectral preferences in two cryptic species of grey treefrogs: implications for mate choice and sensory mechanisms. Anim Behav 70:39–48

    Article  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago University Press, Chicago

    Google Scholar 

  • Gerhardt HC, Schwartz JJ (2001) Auditory tuning, frequency preferences and mate choice in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington DC, pp 73–85

    Google Scholar 

  • Gerhardt HC, Martinez-Rivera CC, Schwartz JJ, Marshall VT, Murphy CG (2007) Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). J Exp Biol 210(17):2990–2998

    Article  PubMed  Google Scholar 

  • Girard MB, Elias DO, Kasumovic MM (2015) Female preference for multi-modal courtship: multiple signals are important for male mating success in peacock spiders. Proc R Soc B 282(1820):20152222

    Article  PubMed  PubMed Central  Google Scholar 

  • Goense JBM, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol 65(1):22–36

    Article  PubMed  Google Scholar 

  • Hall JC (1994) Central processing of communication sounds in the anuran auditory system. Am Zool 34(6):670–684

    Article  Google Scholar 

  • Hall JC (1999) GABAergic inhibition shapes frequency tuning and modifies response properties in the auditory midbrain of the leopard frog. J Comp Physiol A 185(5):479–491

    Article  CAS  PubMed  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57(3):197–214

    Article  Google Scholar 

  • Higham JP, Hebets EA (2013) An introduction to multimodal communication. Behav Ecol Sociobiol 67(9):1381–1388

    Article  Google Scholar 

  • Kadia SC, Wang XQ (2003) Spectral integration in Al of awake primates: neurons with single- and multipeaked tuning characteristics. J Neurophysiol 89(3):1603–1622

    Article  PubMed  Google Scholar 

  • Kawasaki M, Margoliash D, Suga N (1988) Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat. J Neurophysiol 59(2):623–635

    CAS  PubMed  Google Scholar 

  • Klump GM, Benedix JH, Gerhardt HC, Narins PM (2004) AM representation in green treefrog auditory nerve fibers: neuroethological implications for pattern recognition and sound localization. J Comp Physiol A 190(12):1011–1021

    Article  CAS  Google Scholar 

  • Lee N, Ward JL, Vélez A, Micheyl C, Bee MA (2017) Frogs exploit statistical regularities in noisy acoustic scenes to solve cocktail-party-like problems. Curr Biol 27(5):743–750

    Article  CAS  PubMed  Google Scholar 

  • Leroy SA, Wenstrup JJ (2000) Spectral integration in the inferior colliculus of the mustached bat. J Neurosci 20(22):8533–8541

    CAS  PubMed  Google Scholar 

  • Lu K, Xu YB, Yin PB, Oxenham AJ, Fritz JB, Shamma SA (2017) Temporal coherence structure rapidly shapes neuronal interactions. Nat Commun 8:13900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margoliash D, Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. J Neurosci 12(11):4309–4326

    CAS  PubMed  Google Scholar 

  • Medvedev AV, Chiao F, Kanwal JS (2002) Modeling complex tone perception: grouping harmonics with combination-sensitive neurons. Biol Cybern 86(6):497–505

    Article  PubMed  Google Scholar 

  • Megela AL (1983) Auditory response properties of the anuran thalamus: nonlinear facilitation. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 895–899

    Chapter  Google Scholar 

  • Megela-Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green tree frog (Hyla cinerea). J Acoust Soc Am 78(4):1236–1244

    Article  CAS  PubMed  Google Scholar 

  • Milinski M, Bakker TC (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344(6264):330

    Article  Google Scholar 

  • Miranda JA, Wilczynski W (2009) Female reproductive state influences the auditory midbrain response. J Comp Physiol A 195(4):341–349

    Article  Google Scholar 

  • Mittmann DH, Wenstrup JJ (1995) Combination-sensitive neurons in the inferior colliculus. Hear Res 90(1–2):185–191

    Article  CAS  PubMed  Google Scholar 

  • Moffat AJM, Capranica RR (1974) Sensory processing in the peripheral auditory system of treefrogs (Hyla). J Acoust Soc Am 55(2):480

    Article  Google Scholar 

  • Moss CF, Simmons AM (1986) Frequency selectivity of hearing in the green treefrog, Hyla cinerea. J Comp Physiol A 159(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Mudry KM, Capranica RR (1987a) Correlation between auditory evoked responses in the thalamus and species-specific call characteristics I. Rana catesbeiana (Anura, Ranidae). J Comp Physiol A 160(4):477–489

    Article  CAS  PubMed  Google Scholar 

  • Mudry KM, Capranica RR (1987b) Correlation between auditory thalamic area evoked responses and species-specific call characteristics II. Hyla cinerea (Anura: Hylidae). J Comp Physiol A 161(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon of the leopard frog (Rana p. pipiens). J Comp Physiol 114(1):1–13

    Article  Google Scholar 

  • Nataraj K, Wenstrup JJ (2006) Roles of inhibition in complex auditory responses in the inferior colliculus: inhibited combination-sensitive neurons. J Neurophysiol 95(4):2179–2192

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, Heidelberg

    Book  Google Scholar 

  • Oldham RS, Gerhardt HC (1975) Behavioral isolating mechanisms of treefrogs Hyla cinerea and Hyla gratiosa. Copeia 1975:223–231

    Article  Google Scholar 

  • Olsen JF, Suga N (1991a) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol 65(6):1254–1274

    CAS  PubMed  Google Scholar 

  • Olsen JF, Suga N (1991b) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. J Neurophysiol 65(6):1275–1296

    CAS  PubMed  Google Scholar 

  • Partan SR (2013) Ten unanswered questions in multimodal communication. Behav Ecol Sociobiol 67(9):1523–1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Partan SR, Marler P (1999) Communication goes multimodal. Science 283(5406):1272–1273

    Article  CAS  PubMed  Google Scholar 

  • Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. Am Nat 166(2):231–245

    Article  PubMed  Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol 133(4):247–255

    Article  Google Scholar 

  • Rose GJ, Gooler DM (2007) Function of the amphibian central auditory system. In: Narins PA, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians, vol 28. Springer handbook of auditory research. Springer, New York, pp 250–290

    Chapter  Google Scholar 

  • Rowe C (1999) Receiver psychology and the evolution of multicomponent signals. Anim Behav 58:921–931

    Article  CAS  PubMed  Google Scholar 

  • Rowe C, Halpin C (2013) Why are warning displays multimodal? Behav Ecol Sociobiol 67(9):1425–1439

    Article  Google Scholar 

  • Rowland WJ (1994) Proximate determinants of stickleback behaviour: an evolutionary perspective. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 297–344

    Google Scholar 

  • Ryan MJ (1985) The túngara frog: a study in sexual selection and communication. Chicago University Press, Chicago

    Google Scholar 

  • Simmons AM (2013) “To ear is human, to frogive is divine”: Bob Capranica’s legacy to auditory neuroethology. J Comp Physiol A 199(3):169–182

    Article  Google Scholar 

  • Suga N, Oneill WE, Kujirai K, Manabe T (1983) Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol 49(6):1573–1626

    CAS  PubMed  Google Scholar 

  • Sussman HM, Fruchter D, Hilbert J, Sirosh J (1998) Linear correlates in the speech signal: the orderly output constraint. Behav Brain Sci 21(02):241–259

    CAS  PubMed  Google Scholar 

  • Titus K, Mosher JA, Williams BK (1984) Chance-corrected classification for use in discriminant-analysis: ecological applications. Am Midl Nat 111(1):1–7

    Article  Google Scholar 

  • Uetz GW, Roberts JA, Clark DL, Gibson JS, Gordon SD (2013) Multimodal signals increase active space of communication by wolf spiders in a complex litter environment. Behav Ecol Sociobiol 67(9):1471–1482

    Article  Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the torus semicircularis of the fire-bellied toad and the grass frog: responses to simple stimuli and to conspecific calls. J Comp Physiol 138(2):131–148

    Article  Google Scholar 

  • Ward JL, Buerkle NP, Bee MA (2013a) Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Hear Res 306:63–75

    Article  PubMed  Google Scholar 

  • Ward JL, Love EK, Vélez A, Buerkle NP, O’Bryan LR, Bee MA (2013b) Multitasking males and multiplicative females: dynamic signalling and receiver preferences in Cope’s grey treefrog. Anim Behav 86(2):231–243

    Article  Google Scholar 

  • Wootton RJ (1976) Biology of the sticklebacks. Academic Press, London

    Google Scholar 

  • Yan J, Suga N (1996) The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat. Hear Res 93(1–2):102–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All experimental procedures were approved by the University of Minnesota Institutional Animal Care and Use Committee (1103A97192, 1401-31258A). The authors thank Peter Narins for his invitation to contribute to this Special Issue; Christopher Maldonado and Gary Calkins for access to frogs in Texas; Jim Hall for advice on marking recording sites; Camille Herteaux, Mary Elson, and Adam Hartman for animal care; two anonymous reviewers for helpful feedback on an earlier version of the manuscript; and the National Science Foundation for a grant to MAB (NSF IOS-1452831) in support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bee.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N., Schrode, K.M. & Bee, M.A. Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus. J Comp Physiol A 203, 749–772 (2017). https://doi.org/10.1007/s00359-017-1195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1195-3

Keywords

Navigation