Skip to main content

Advertisement

Log in

Mapping brain structure and function: cellular resolution, global perspective

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism’s behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

From: Wellcome Images (http://wellcomeimages.org)

Fig. 2

From: Wellcome Images (http://wellcomeimages.org)

Fig. 3
Fig. 4

From: Swanson (2004 )

Fig. 5
Fig. 6

Adapted from: Sîrbulescu et al. (2014)

Fig. 7

Adapted from: Portugues et al. 2014

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers Y-HC, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Miklos GLG, Abril JF, Agbayani A, An H-J, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei M-H, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Sidén-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang Z-Y, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh R-F, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 17:191–201

    Article  CAS  PubMed  Google Scholar 

  • Bargmann CI (1993) Genetic and cellular analysis of behavior in C. elegans. Annu Rev Neurosci 16:47–71

    Article  CAS  PubMed  Google Scholar 

  • Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods 10:483–490

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Brandt R, Rohlfing T, Rybak J, Krofczik S, Maye A, Westerhoff M, Hege H-C, Menzel R (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1–19

    Article  PubMed  Google Scholar 

  • Briggman KL, Denk W (2006) Towards neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16:562–570

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth, Leipzig

  • Buhl EH (1993) Intracellular injection in fixed slices in combination with neuroanatomical tracing techniques and electron microscopy to determine multisynaptic pathways in the brain. Microsc Res Tech 24:15–30

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Falck B, Hillarp N-Å (1962) Cellular localization of brain monoamines. Acta Physiol Scand 56(Suppl. 196):1–28

    CAS  Google Scholar 

  • Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry JA, Basham ME, Weaver CE, Krohmer RW, Baum MJ (1990) Ontogeny of the sexually dimorphic male nucleus in the preoptic/anterior hypothalamus of ferrets and its manipulation by gonadal steroids. J Neurobiol 21:844–857

    Article  CAS  PubMed  Google Scholar 

  • Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W, Shih C-T, Wu J-J, Wang G-T, Chen Y-C, Wu C-C, Chen G-Y, Ching Y-T, Lee P-C, Lin C-Y, Lin H-H, Wu C-C, Hsu H-W, Huang Y-A, Chen J-Y, Chiang H-J, Lu C-F, Ni R-F, Yeh C-Y, Hwang J-K (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA, Mattis J, Denisin AK, Pak S, Bernstein H, Ramakrishnan C, Grosenick L, Gradinaru V, Deisseroth K (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl. 232):1–55

    Google Scholar 

  • Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 6:147–190

    CAS  Google Scholar 

  • Dale HH, Dudley HW (1929) The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol 68:97–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carlos JA, Borrell J (2007) A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Res Rev 55:8–16

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EDP, Bennett HS (1955) Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol 1:47–58

    Article  PubMed Central  Google Scholar 

  • de Vries GJ, Södersten P (2009) Sex differences in the brain: the relation between structure and function. Horm Behav 55:589–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiters O (1865) Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere. Friedrich Vieweg und Sohn, Braunschweig

  • Deiters VS, Guillery RW (2013) Otto Friedrich Karl Deiters (1834–1863). J Comp Neurol 521:1929–1953

    Article  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Domanski CW (2013) Mysterious “Monsieur Leborgne”: the mystery of the famous patient in the history of neuropsychology is explained. J Hist Neurosci 22:47–52

    Article  PubMed  Google Scholar 

  • Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130:1432–1441

    Article  CAS  PubMed  Google Scholar 

  • Du Bois-Reymond E (1877) Experimentalkritik der Entladungshypothese über die Wirkung von Nerv auf Muskel (Monatsberichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, 1874, p. 519). Gesammelte Abhandlungen zur allgemeinen Muskel- und Nervenphysik, Zweiter Band. Veit & Co, Leipzig, pp 698–736

  • Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang C-T, Schier AF, Freeman J, Engert F, Ahrens MB (2016) Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. Elife 5:e12741

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott TR (1904) On the action of adrenalin. J Physiol 31:xx–xxi

    Article  Google Scholar 

  • Falck B, Torp A (1962) New evidence for the localization of noradrenalin in the adrenergic nerve terminals. Med Exp 6:169–172

    CAS  PubMed  Google Scholar 

  • Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catechol amines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    Article  CAS  Google Scholar 

  • Faumont S, Rondeau G, Thiele TR, Lawton KJ, McCormick KE, Sottile M, Griesbeck O, Heckscher ES, Roberts WM, Doe CQ, Lockery SR (2011) An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS One 6:e24666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger S (1991) Brain damage, development, and behavior: early findings. Dev Neuropsychol 7:261–274

    Article  Google Scholar 

  • Finger S (1994) Origins of neuroscience: a history of explorations into brain function. Oxford University Press, Oxford

    Google Scholar 

  • Fishman MC (1972) Sir Henry Hallett Dale and the acetylcholine story. Yale J Biol Med 45:104–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forger NG, Breedlove SM (1987) Seasonal variation in mammalian striated muscle mass and motoneuron morphology. J Neurobiol 18:155–165

    Article  CAS  PubMed  Google Scholar 

  • Freemon FR (1994) Galen’s ideas on neurological function. J Hist Neurosci 3:263–271

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64(Suppl. 247):37–85

    Google Scholar 

  • Gee CE, Chen C-LC, Roberts JL, Thompson R, Watson SJ (1983) Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization. Nature 306:374–376

    Article  CAS  PubMed  Google Scholar 

  • Getting PA, Dekin MS (1985) Tritonia swimming: a model system for integration within rhythmic motor systems. In: Selverston AI (ed) Model neural netowrks and behavior. Plenum Press, New York, pp 3–20

    Chapter  Google Scholar 

  • Glauert AM (1974) The high voltage electron microscope in biology. J Cell Biol 63:717–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101:697–713

    CAS  PubMed  Google Scholar 

  • González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D (2016) Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  CAS  PubMed  Google Scholar 

  • Gross CG (1998) Galen and the squealing pig. Neuroscientist 4:216–221

    Article  Google Scholar 

  • Hagiwara S, Tasaki I (1958) A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol 143:114–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall DH, Altun ZF (2008) C. elegans atlas. Cold Spring Harbor, New York

    Google Scholar 

  • Hall ZW, Hildebrand JG, Kravitz EA (1974) Chemistry of synaptic transmision: essays and sources. Chiron Press, Newton

    Google Scholar 

  • Hartman BK, Udenfriend S (1970) Immunofluorescent localization of dopamine β-hydroxylase in tissues. Mol Pharmacol 6:85–94

    CAS  PubMed  Google Scholar 

  • Hobert O (2010) Neurogenesis in the nematode Caenorhabditis elegans. WormBook. doi:10.1895/wormbook.1.12.2

  • Huisken J, Stainier DYR (2009) Selective plane illumination microscopy techniques in developmental biology. Development 136:1963–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones EG (1999) Golgi, Cajal and the neuron doctrine. J Hist Neurosci 8:170–178

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (1987) The organization of neocortex in mammals: implications for theories of brain function. Annu Rev Psychol 38:129–151

    Article  CAS  PubMed  Google Scholar 

  • Karten HJ, Brzozowska-Prechtl A, Lovell PV, Tang DD, Mello CV, Wang H, Mitra PP (2013) Digital atlas of the zebra finch (Taeniopygia guttata) brain: a high-resolution photo atlas. J Comp Neurol 521:3702–3715

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, Lockery S, Zimmer M (2015) Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163:656–669

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    Article  CAS  PubMed  Google Scholar 

  • Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U (2008) Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell Tissue Res 333:125–145

    Article  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanciego JL, Wouterlood FG (2011) A half century of experimental neuroanatomical tracing. J Chem Neuroanat 42:157–183

    Article  PubMed  Google Scholar 

  • Lanciego JL, Wouterlood FG, Erro E, Giménez-Amaya JM (1998) Multiple axonal tracing: simultaneous detection of three tracers in the same section. Histochem Cell Biol 110:509–515

    Article  CAS  PubMed  Google Scholar 

  • Langley JN (1901) Observations on the physiological action of extracts of the supra-renal bodies. J Physiol 27:237–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    Article  CAS  PubMed  Google Scholar 

  • Leapman RD (2004) Novel techniques in electron microscopy. Curr Opin Neurobiol 14:591–598

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong H-W, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf K-R, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  • Lemon WC, Pulver SR, Höckendorf B, McDole K, Branson K, Freeman J, Keller PJ (2015) Whole-central nervous system functional imaging in larval Drosophila. Nat Commun 6:7924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MZ, Schnitzer MJ (2016) Genetically encoded indicators of neuronal activity. Nat Neurosci 19:1142–1153

    Article  PubMed  CAS  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  CAS  PubMed  Google Scholar 

  • Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pflugers Arch 189:239–242

    Article  Google Scholar 

  • Luders E, Toga AW (2010) Sex differences in brain anatomy. Prog Brain Res 186:3–12

    PubMed  Google Scholar 

  • Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo P, Haines A, Dessem D (2001) Elucidation of neuronal circuitry: protocol(s) combining intracellular labeling, neuroanatomical tracing and immunocytochemical methodologies. Brain Res Protoc 7:222–234

    Article  CAS  Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    Article  CAS  PubMed  Google Scholar 

  • Manzoni T (1998) The cerebral ventricles, the animal spirits and the dawn of brain localization of function. Arch Ital Biol 136:103–152

    CAS  PubMed  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marder E, Gutierrez GJ, Nusbaum MP (in press) Complicating connectomes: electrical coupling creates parallel pathways and degenerate circuit mechanisms. Dev Neurobiol. doi:10.1002/dneu.22410

  • Martone ME, Deerinck TJ, Yamada N, Bushong E, Ellisman MH (2000) Correlated 3D light and electron microscopy: use of high voltage electron microscopy and electron tomography for imaging large biological structures. J Histotechnol 23:261–270

    Article  Google Scholar 

  • McEwen BF, Marko M (2001) The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49:553–563

    Article  CAS  PubMed  Google Scholar 

  • Milburn NS, Bentley DR (1971) On the dendritic topology and activation of cockroach giant interneurons. J Insect Physiol 17:607–623

    Article  Google Scholar 

  • Milyaev N, Osumi-Sutherland D, Reeve S, Burton N, Baldock RA, Armstrong JD (2012) The Virtual Fly Brain browser and query interface. Bioinformatics 28:411–415

    Article  CAS  PubMed  Google Scholar 

  • Ming G-l, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nat Neurosci 7:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Ohkura M, Abe G, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23:307–311

    Article  CAS  PubMed  Google Scholar 

  • Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Nissl F (1894) Ueber eine neue Untersuchungsmethode des Centralorgans speciell zur Feststellung der Localisation der Nervenzellen. Centralbl Nervenheilk Psychiatr 5:337–344

    Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade GE (1954) Electron microscope observations of interneuronal and neuromuscular synapses. Anat Rec 118:335–336

    Google Scholar 

  • Palay SL (1956) Synapses in the central nervous system. J Biophys Biochem Cytol 2(4, Suppl.):193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payton BW, Bennett MVL, Pappas GD (1969) Permeability and structure of junctional membranes at an electrotonic synapse. Science 166:1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P (2012) Why do axons differ in caliber? J Neurosci 32:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirri JK, Alkema MJ (2012) The neuroethology of C. elegans escape. Curr Opin Neurobiol 22:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portugues R, Feierstein CE, Engert F, Orger MB (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81:1328–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rein K, Zöckler M, Mader MT, Grübel C, Heisenberg M (2002) The Drosophila standard brain. Curr Biol 12:227–231

    Article  CAS  PubMed  Google Scholar 

  • Remler M, Selverston A, Kennedy D (1968) Lateral giant fibers of crayfish: location of somata by dye injection. Science 162:281–283

    Article  CAS  PubMed  Google Scholar 

  • Renninger SL, Orger MB (2013) Two-photon imaging of neural population activity in zebrafish. Methods 62:255–267

    Article  CAS  PubMed  Google Scholar 

  • Sacher J, Neumann J, Okon-Singer H, Gotowiec S, Villringer A (2013) Sexual dimorphism in the human brain: evidence from neuroimaging. Magn Reson Imaging 31:366–375

    Article  PubMed  Google Scholar 

  • Salisbury JP, Sîrbulescu RF, Moran BM, Auclair JR, Zupanc GKH, Agar JN (2015) The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation. BMC Genomics 16:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sandeman DC (1969) Integrative properties of a reflex motoneuron in the brain of the crab Carcinus maenas. Z Vergl Physiol 64:450–464

    Article  Google Scholar 

  • Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JN (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci USA 106:19557–19562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A (2016) Quantitative neuroanatomy for connectomics in Drosophila. Elife 5:e12059

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwann T (1839) Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Sander, Berlin

  • Simons P, Kornell M (2008) Annibal Caro’s after-dinner speech (1536) and the question of Titian as Vesalius’s illustrator. Renaiss Quart 61:1069–1097

    Article  Google Scholar 

  • Sîrbulescu RF, Ilieş I, Zupanc GKH (2014) Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator. Dev Neurobiol 74:934–952

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stookey B (1954) A note on the early history of cerebral localization. Bull NY Acad Med 30:559–578

    CAS  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Book  Google Scholar 

  • Stretton AOW, Kravitz EA (1968) Neuronal geometry: determination with a technique of intracellular dye injection. Science 162:132–134

    Article  CAS  PubMed  Google Scholar 

  • Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One 10:e0133921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson LW (2004) Brain maps III: structure of the rat brain. 3rd edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Swanson LW (2007) Quest for the basic plan of nervous system circuitry. Brain Res Rev 55:356–372

    Article  PubMed  Google Scholar 

  • Thompson RH, Swanson LW (2010) Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture. Proc Natl Acad Sci USA 107:15235–15239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tizard B (1959) Theories of brain localization from Flourens to Lashley. Med Hist 3:132–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenstein ES (2005) The war of the soups and the sparks: the discovery of neurotransmitters and the dispute over how nerves communicate. Columbia University Press, New York

    Book  Google Scholar 

  • Van Ruijssevelt L, Van der Kant A, De Groof G, Van der Linden A (2013) Current state-of-the-art of auditory functional MRI (fMRI) on zebra finches: technique and scientific achievements. J Physiol Paris 107:156–169

    Article  PubMed  Google Scholar 

  • Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Küstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin Y-C, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Völker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang S-P, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK (2010) The genome of a songbird. Nature 464:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigert C (1882) Über eine neue Untersuchungsmethode des Centralnervensystems. Centralbl Med Wiss 20:753–757, 772–774

    Google Scholar 

  • Weiskopf N, Mohammadi S, Lutti A, Callaghan MF (2015) Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr Opin Neurol 28:313–322

    Article  CAS  PubMed  Google Scholar 

  • Wetterstrand KA (2016) DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). http://www.genome.gov/sequencingcostsdata. Accessed on January 30 2017

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 314:1–340

    Article  CAS  Google Scholar 

  • White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler C, Potter A (1911) An anatomical guide to experimental researches on the rabbit’s brain. W. Versluys, Amsterdam

    Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhäuser, Basel

    Book  Google Scholar 

  • Zupanc GKH (1996) Peptidergic transmission: from morphological correlates to functional implications. Micron 27:35–91

    Article  CAS  PubMed  Google Scholar 

  • Zupanc GKH (1998) An in vitro technique for tracing neuronal connections in the teleost brain. Brain Res Protoc 3:37–51

    Article  CAS  Google Scholar 

  • Zupanc GKH (2010) Behavioral neurobiology: an integrative approach. 2nd edn. Oxford University Press, Oxford/New York

    Google Scholar 

  • Zupanc GKH (2017) Adult neurogenesis in the teleost fish brain: developmental principles and evolutionary implications. In: Kaas JH (ed) Evolution of nervous systems. 2nd edn. Elsevier, Oxford, pp 99–120

    Chapter  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1989) Sexual maturity-dependent changes in neuronal morphology in the prepacemaker nucleus of adult weakly electric knifefish, Eigenmannia. J Neurosci 9:3816–3827

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ricardo Martínez (Instituto Cajal, Madrid, Spain), Larry W. Swanson (University of Southern California, Los Angeles, California, USA), Rob Piercy (Allen Institute, Seattle, Washington, USA), and Michael B. Orger (Champalimaud Neuroscience Program, Lisbon, Portugal) supplied Figs. 3, 4, 5, and 7, respectively. Drs. Swanson and Orger also provided helpful comments on the manuscript, as did two anonymous reviewers. I am grateful to each of them. Research relevant to this review article is funded by Grant number 1538505, awarded by the National Science Foundation to G.K.H.Z. and Rifat Sipahi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther K. H. Zupanc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zupanc, G.K.H. Mapping brain structure and function: cellular resolution, global perspective. J Comp Physiol A 203, 245–264 (2017). https://doi.org/10.1007/s00359-017-1163-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1163-y

Keywords

Navigation