Skip to main content
Log in

Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EOD:

Electric organ discharge

gDNA:

Genomic DNA

RTqPCR:

Quantitative reverse transcription PCR

RIN:

RNA integrity number

References

  • Abbas L, Hajihashemi S, Stead LF, Cooper GJ, Ware TL, Munsey TS, Whitfield TT, White SJ (2011) Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1. J Physiol 589:1489–1503. doi:10.1113/jphysiol.2010.200295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves-Gomes JA (2001) The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective. J Fish Biol 58:1489–1511. doi:10.1006/jfbi.2001.1625

    Article  Google Scholar 

  • Alves-Gomes JA, Hopkins CD (1997) Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organs. Brain Behav Evol 49:324–350. doi:10.1159/000316291

    Article  CAS  PubMed  Google Scholar 

  • Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system–twice. Proc Natl Acad Sci USA 107:22172–22177. doi:10.1073/pnas.1011803107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass AH (1986a) Electric organs revisited: evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 13–70

    Google Scholar 

  • Bass AH (1986b) Species differences in electric organs of mormyrids: substrates for species-typical electric organ discharge waveforms. J Comp Neurol 244:313–330. doi:10.1002/cne.902440305

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic Press, New York, pp 347–491

    Google Scholar 

  • Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti A, Aximu-Petri A, Kircher M, Albert FW, Zeller U, Khaitovich P, Grützner F, Bergmann S, Nielsen R, Pääbo S, Kaessmann H (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348. doi:10.1038/nature10532

    Article  CAS  PubMed  Google Scholar 

  • Budhia S, Haring LF, McConnell I, Blacklaws BA (2006) Quantitation of ovine cytokine mRNA by real-time RT-PCR. J Immunol Methods 309:160–172. doi:10.1016/j.jim.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett JF, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36. doi:10.1016/j.cell.2008.06.030

    Article  CAS  PubMed  Google Scholar 

  • Denizot JP, Kirschbaum F, Westby GWM, Tsuji S (1982) On the development of the adult electric organ in the mormyrid fish Pollimyrus isidori (with special focus on the innervation). J Neurocytol 11:913–934. doi:10.1007/BF01148308

    Article  CAS  PubMed  Google Scholar 

  • Denizot JP, Kirschbaum F, Schugardt C, Bensouilah M (1998) Larval electroreceptors indicate a larval electric system in mormyrids. Neurosci Lett 241:103–106. doi:10.1016/S0304-3940(98)00030-5

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MB, Zakon HH (1993) Conductances contributing to the action potential of Sternopygus electrocytes. J Comp Physiol A 173:281–292. doi:10.1007/BF00212692

    Article  CAS  PubMed  Google Scholar 

  • Ferrari MB, McAnelly ML, Zakon HH (1995) Individual variation in and androgen-modulation of the sodium current in electric organ. J Neurosci 15:4023–4032

    CAS  PubMed  Google Scholar 

  • Feulner PGD, Kirschbaum F, Schugardt C, Ketmaier V, Tiedemann R (2006) Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei: Mormyridae: Campylomormyrus). Mol Phylogenet Evol 39:198–208. doi:10.1016/j.ympev.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  • Feulner PGD, Kirschbaum F, Mamonekene V, Ketmaier V, Tiedemann R (2007) Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approach. J Evol Biol 20:403–414. doi:10.1111/j.1420-9101.2006.01181.x

    Article  CAS  PubMed  Google Scholar 

  • Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R (2009a) Electrifying love: electric fish use species-specific discharge for mate recognition. Biol Lett 5:225–228. doi:10.1098/rsbl.2008.0566

    Article  PubMed  Google Scholar 

  • Feulner PGD, Plath M, Engelmann J, Kirschbaum F, Tiedemann R (2009b) Magic trait electric organ discharge (EOD): dual function of electric signals promotes speciation in African weakly electric fish. Commun Integr Biol 2:329–331. doi:10.1098/rsbl.2008.0566.for

    Article  PubMed  PubMed Central  Google Scholar 

  • Few WP, Zakon HH (2007) Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal. Dev Neurobiol 67:535–549. doi:10.1002/dneu.20305

    Article  CAS  PubMed  Google Scholar 

  • Fountain SJ, Cheong A, Flemming R, Mair L, Sivaprasadarao A, Beech DJ (2004) Functional up-regulation of KCNA gene family expression in murine mesenteric resistance artery smooth muscle. J Physiol 556:29–42. doi:10.1113/jphysiol.2003.058594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant JR, Hopkins CD, Deitcher DL (2012) Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius. J Exp Biol 215:2479–2494. doi:10.1242/jeb.063222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen P-H, Novina CD, Phillips GN, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon HH, Samanta MP, Sussman MR (2014) Genomic basis for the convergent evolution of electric organs. Science 644:1522–1525. doi:10.1126/science.1254432

    Article  Google Scholar 

  • Hibbeler S, Scharsack JP, Becker S (2008) Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Mol Biol 9:18. doi:10.1186/1471-2199-9-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203. doi:10.1007/s00239-004-2613-z

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1997) Voltage-gated and inwardly rectifying potassium channels. J Physiol 505:267–282. doi:10.1111/j.1469-7793.1997.267bb.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser P, Rothwell L, Galyov EE, Barrow PA, Burnside J, Wigley P (2000) Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiol 146:3217–3226. doi:10.1099/00221287-146-12-3217

    Article  CAS  Google Scholar 

  • Kirschbaum F (1977) Electric-organ ontogeny: distinct larval organ precedes the adult organ in weakly electric fish. Naturwissenschaften 64:387–388. doi:10.1007/BF00368748

    Article  Google Scholar 

  • Kirschbaum F (1983) Myogenic electric organ precedes the neurogenic organ in apteronotid fish. Naturwissenschaften 70:205–207. doi:10.1007/BF01047569

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum F, Schugardt C (1995) Vergleichende Daten zur Forpflanzungsbiologie von zwei Nilhechte-Arten (Mormyridae). In: Greven H, Riehl R (eds) Fortpflanzungsbiologie der Aquarienfische. Birgit Schmettkamp Verlag, Bornheim, pp 81–90

    Google Scholar 

  • Kirschbaum F, Schugardt C (2002) Reproductive strategies and developmental aspects in mormyrid and gymnotiform fishes. J Physiol Paris 96:557–566. doi:10.1016/S0928-4257(03)00011-1

    Article  PubMed  Google Scholar 

  • Lamanna F, Kirschbaum F, Tiedemann R (2014) De novo assembly and characterization of the skeletal muscle and electric organ transcriptomes of the African weakly electric fish Campylomormyrus compressirostris (Mormyridae, Teleostei). Mol Ecol Resour 14:1222–1230. doi:10.1111/1755-0998.12260

    Article  CAS  PubMed  Google Scholar 

  • Lamanna F, Kirschbaum F, Waurick I, Dieterich C, Tiedemann R (2015) Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae). BMC Genomics 16:668. doi:10.1186/s12864-015-1858-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamanna F, Kirschbaum F, Ernst ARR, Feulner PGD, Momonekene V, Paul C, Tiedemann R (2016) Species delimination and phylogenetic relationships in a genus of African weakly-electric fishes (Osteoglossiformes, Mormyridae, Campylomormyrus). Mol Phyl Evol 101:8–18. doi:10.1016/j.ympev.2016.04.035

    Article  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • Markham MR, Kaczmarek LK, Zakon HH (2013) A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. J Neurophysiol 109:1713–1723. doi:10.1152/jn.00875.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAnelly ML, Zakon HH (2000) Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ. J Neurosci 20:3408–3414

    CAS  PubMed  Google Scholar 

  • McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102. doi:10.1186/1471-2199-9-102

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937–945. doi:10.1002/bies.20293

    Article  CAS  PubMed  Google Scholar 

  • Moller P (1995) Electric fishes: history and behavior. 1st ed. Springer Netherlands

  • Nguyen L, Paul C, Mamonekene V, Bartsch P, Tiedemann R, Kirschbaum F (2017) Reproduction and development in some species of the weakly electric genus Campylomormyrus (Mormyridae, Teleostei). Env Biol Fish 100:49–68. doi:10.1007/s10641-016-0554-1

    Article  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New York

    Book  Google Scholar 

  • Pattnaik BR, Asuma MP, Spott R, Pillers DAM (2012) Genetic defects in the hotspot of inwardly rectifying K+ (Kir) channels and their metabolic consequences: a review. Mol Genet Metab 105:64–72. doi:10.1016/j.ymgme.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  • Paul C, Mamonekene V, Vater M, Feulner PGD, Engelmann J, Tiedemann R, Kirschbaum F (2015) Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae). J Comp Physiol A 201:357–374. doi:10.1007/s00359-015-0995-6

    Article  Google Scholar 

  • Paul C, Kirschbaum F, Mamonekene V, Tiedemann R (2016) Evidence for non-neutral evolution in a sodium channel gene in African weakly electric fish (Campylomormyrus, Mormyridae). J Mol Evol 83:61–77. doi:10.1007/s00239-016-9754-8

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Georgieva TM, Georgiev IP, Ontsouka E, Hageleit M, Blum JW (2002) Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species. Domest Anim Endocrinol 22:91–102. doi:10.1016/S0739-7240(01)00128-X

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing

  • Rosati B, McKinnon D (2004) Regulation of ion channel expression. Circ Res 94:874–883. doi:10.1161/01.RES.0000124921.81025.1F

    Article  CAS  PubMed  Google Scholar 

  • RStudio Team (2015) RStudio: Integrated Development for R

  • Salkoff L, Baker K, Butler A, Covarrubias M, Pak M, Wei A (1992) An essential “set” of K+ channels conserved in flies, mice and humans. Trends Neurosci 15:161–166. doi:10.1016/0166-2236(92)90165-5

    Article  CAS  PubMed  Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Schugardt C, Kirschbaum F (1998) Sozial- und Fortpflanzungsverhalten von Mormyriden (Nilhechten). In: Greven H, Riehl R (ed) Verhalten der Aquarienfische1. pp 87–98

  • Schugardt C, Kirschbaum F (2004) Control of gonadal maturation and regression by experimental variation of environmental factors in the mormyrid fish, Mormyrus rume proboscirostris. Environ Biol Fishes 70:227–233. doi:10.1023/B:EBFI.0000033340.49266.f3

    Article  Google Scholar 

  • Smith GT, Zakon HH (2000) Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish. J Neurobiol 42:270–286. doi:10.1002/neu.20202

    Article  CAS  PubMed  Google Scholar 

  • Steinke D, Salzburger W, Braasch I, Meyer A (2006) Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics 7. doi:10.1186/1471-2164-7-20

    PubMed  PubMed Central  Google Scholar 

  • Sullivan J, Lavoue S, Hopkins CD (2016) Cryptomyrus: a new genus of Mormyridae (Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central Africa. Zookeys 561:117–150. doi:10.3897/zookeys.561.7137

    Article  Google Scholar 

  • Szabo T (1960) Development of the electric organ of Mormyridae. Nature 188:760–762. doi:10.1038/188760b0

    Article  CAS  PubMed  Google Scholar 

  • Thompson A, Vo D, Comfort C, Zakon HH (2014) Expression evolution facilitated the convergent neofunctionalization of a sodium channel gene. Mol Biol Evol 31:1941–1955. doi:10.1093/molbev/msu145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiedemann R, Feulner PGD, Kirschbaum F (2010) Electric organ discharge divergence promotes ecological speciation in sympatrically occurring African weakly electric fish (Campylomormyrus). In: Glaubrecht M (ed) Evolution in Action. Springer-Verlag, Berlin, pp 307–321

    Chapter  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737. doi:10.1105/tpc.108.061143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westby GWM, Kirschbaum F (1977) Emergence and development of the electric organ discharge in the mormyrid fish, Pollimyrus isidori. J Comp Physiol A 122:251–271. doi:10.1007/BF00611894

    Article  Google Scholar 

  • Zakon HH, Mcanelly L, Smith GT, Dunlap K, Lopreato G, Oestreich J, Few WP (1999) Plasticity of the electric organ discharge: implications for the regulation of ionic currents. J Exp Biol 202:1409–1416

    CAS  PubMed  Google Scholar 

  • Zakon HH, Lu Y, Zwickl DJ, Hillis DM (2006) Sodium channel genes and the evolution of diversity in communication signals of electric fishes: convergent molecular evolution. Proc Natl Acad Sci USA 103:3675–3680. doi:10.1073/pnas.0600160103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakon HH, Zwickl DJ, Lu Y, Hillis DM (2008) Molecular evolution of communication signals in electric fish. J Exp Biol 211:1814–1818. doi:10.1242/jeb.015982

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH, Jost MC, Zwickl DJ, Lu Y, Hillis DM (2009) Molecular evolution of Na+ channels in teleost fishes. Integr Zool 4:64–74. doi:10.1111/j.1749-4877.2008.00136.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Klaudia Manteuffel and Tonio Pieterek for care of the fish. We thank Linh Nguyen for providing juvenile EOD recordings. The work was supported by the University of Potsdam and GENART. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Tiedemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagel, R., Kirschbaum, F. & Tiedemann, R. Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes. J Comp Physiol A 203, 183–195 (2017). https://doi.org/10.1007/s00359-017-1151-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1151-2

Keywords

Navigation