Skip to main content
Log in

Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Rüdiger Wehner’s work on insect orientation and navigation has influenced many scientists studying navigation, not only in ants and bees, but in other animals as well. We review the scientific legacy of six topics arising from Wehner’s work on navigation. The polarisation compass is a chapter with a lot of behavioural and neurobiological detail. It has influenced the study of polarisation vision in other systems, and led Wehner to formulate the concept of a matched filter. The matched filter has probably had earlier formulations, but Wehner’s paper on it has been much cited in studies on navigation and in other fields. The polarisation compass serves the task of path integration in insects. Work on path integration took off in the 1980s with work on desert ants and rodents. The use of terrestrial visual cues, landmarks or the panorama in view-based matching is another major theme of navigational research today. Search strategies were also well described in desert ants, and this line of research helped to launch theoretical and empirical developments in searching behaviour, now a lively area of research. Finally, robotic work has often drawn inspiration from work on insect navigation. We end with some discussion of current research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott A, Callaway E (2014) Prize for place cells: discoverers of brain’s navigation system get physiology Nobel. Nature 514:153

  • Andel D, Wehner R (2004) Path integration in desert ants, Cataglyphis fortis: how to make a homing ant run away from home. Proc R Soc B 271:1485–1489

    PubMed Central  PubMed  Google Scholar 

  • Avni R, Eilam D (2008) On the border: perimeter patrolling as a transitional exploratory phase in a diurnal rodent, the fat sand rat (Psammomys obesus). Anim Cogn 11:311–318

    PubMed  Google Scholar 

  • Avni R, Zadicario P, Eilam D (2006) Exploration in a dark open field: a shift from directional to positional progression and a proposed model of acquiring spatial information. Behav Brain Res 171:313–323

    PubMed  Google Scholar 

  • Backhaus W (1991) Color opponent coding in the visual system of the honeybee. Vision Res 31:1381–1397

    CAS  PubMed  Google Scholar 

  • Baddeley B, Graham P, Philippides A, Husbands P (2011) Holistic visual encoding of ant-like routes: navigation without waypoints. Adapt Behav 19:3–15

    Google Scholar 

  • Baddeley B, Graham P, Husbands P, Philippides A (2012) A model of ant route navigation driven by scene familiarity. PLoS Comput Biol 8:e1002336

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barlow HB (1953) Summation and inhibition in the frog’s retina. J Physiol 119:69–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129

    CAS  PubMed  Google Scholar 

  • Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vergl Physiol 41:1–25

    Google Scholar 

  • Benhamou S (2007) How many animals really do the Lévy walk? Ecol 88:1962–1969

    Google Scholar 

  • Bennett ATD (1993) Spatial memory in a food storing corvid. I. Near tall landmarks are primarily used. J Comp Physiol A 173:193–207

    Google Scholar 

  • Bernard GD, Wehner R (1977) Functional similarities between polarization vision and color vision. Vision Res 17:1019–1028

    CAS  PubMed  Google Scholar 

  • Beugnon G, Lachaud J-P, Chagné P (2005) Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J Insect Behav 18:415–432

    Google Scholar 

  • Buchanan M (2008) The mathematical mirror to animal nature. Nature 453:714–716

    CAS  PubMed  Google Scholar 

  • Buehlmann C, Hansson BS, Knaden M (2012) Desert ants learn vibration and magnetic landmarks. PLoS One 7:e33117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853

    PubMed  Google Scholar 

  • Burns LD (2013) A vision of our transport future. Nature 497:181–182

    CAS  PubMed  Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540

    CAS  PubMed  Google Scholar 

  • Cartwright BA, Collett TS (1979) How honeybees know their distance from a near-by visual landmark. J Exp Biol 82:367–372

    Google Scholar 

  • Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564

    Google Scholar 

  • Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543

    Google Scholar 

  • Cheng K (2012a) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The Oxford handbook of comparative cognition. Oxford University Press, Oxford, pp 347–365

    Google Scholar 

  • Cheng K (2012b) How to navigate without maps: the power of taxon-like navigation in ants. Comp Cogn Behav Rev 7:1–22

    Google Scholar 

  • Cheng K, Spetch ML (1998) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 1–17

    Google Scholar 

  • Cheng K, Collett TS, Wehner R (1986) Honeybees learn the colours of landmarks. J Comp Physiol A 159:69–73

    Google Scholar 

  • Cheng K, Collett TS, Pickhard A, Wehner R (1987) The use of visual landmarks by honeybees: bees weight landmarks according to their distance from the goal. J Comp Physiol A 161:469–475

    Google Scholar 

  • Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Processes 72:115–127

    PubMed  Google Scholar 

  • Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133:625–637

    PubMed  Google Scholar 

  • Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Processes 80:261–268

    PubMed  Google Scholar 

  • Cheng K, Middleton EJT, Wehner R (2012) Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J Exp Biol 215:3169–3174

    PubMed  Google Scholar 

  • Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R (2014) Beginnings of a synthetic approach to desert ant navigation. Behav Processes 102:51–61

    PubMed  Google Scholar 

  • Cheung A, Hiby L, Narendra A (2012) Ant navigation: fractional use of the home vector. PLoS One 7:e50451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chittka L, Kunze J, Shipman C, Buchmann SL (1995) The significance of landmarks for path integration in homing honeybee foragers. Naturwissenschaften 82:341–343

    CAS  Google Scholar 

  • Christian KA, Morton SR (1992) Extreme thermophilia in a Central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905

    Google Scholar 

  • Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci USA 107:11638–11643

    PubMed Central  CAS  PubMed  Google Scholar 

  • Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22:927–932

    CAS  PubMed  Google Scholar 

  • Collett TS, Collett M (2000) Path integration in insects. Curr Opin Neurobiol 10:757–762

    CAS  PubMed  Google Scholar 

  • Collett TS, Land MF (1975) Visual spatial memory in a hoverfly. J Comp Physiol 100:59–84

    Google Scholar 

  • Collett TS, Fry S, Wehner R (1993) Sequence learning by honeybees. J Comp Physiol A 172:693–706

    Google Scholar 

  • Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272

    CAS  Google Scholar 

  • Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800

    CAS  PubMed  Google Scholar 

  • Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ (2003) Insect orientation to polarized moonlight. Nature 424:33

    CAS  PubMed  Google Scholar 

  • Dacke M, Byrne MJ, Scholtz CH, Warrant EJ (2004) Lunar orientation in a beetle. Proc R Soc B 271:361–365

    PubMed Central  PubMed  Google Scholar 

  • Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ (2013) Dung beetles use the Milky Way for orientation. Curr Biol 23:298–300

    CAS  PubMed  Google Scholar 

  • Darwin C (1873) Origin of certain instincts. Nature 7:417–418

    Google Scholar 

  • de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2011) Lévy walks evolve through interaction between movement and environmental complexity. Science 332:1551–1553

    PubMed  Google Scholar 

  • de Jager M, Weissing FJ, Herman PMJ, Nolet BA, van de Koppel J (2012) Response to comment on “Lévy walks evolve through interaction between movement and environmental complexity”. Science 335:918-d

  • Dukas R (2008) Evolutionary biology of insect learning. Annu Rev Entomol 53:145–160

    CAS  PubMed  Google Scholar 

  • Dyer FC (1987) Memory and sun compensation by honey bees. J Comp Physiol A 160:621–633

    Google Scholar 

  • Dyer F (1996) Spatial memory and navigation by honeybees on the scale of the foraging range. J Exp Biol 199:147–154

    PubMed  Google Scholar 

  • Edwards AM (2011) Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecol 92:1247–1257

    Google Scholar 

  • Edwards AM, Phillips RA, Watkins NW, Freeman MP, Murphy EJ, Afanasyev V, Buldyrev SV, da Luz MGE, Raposo EP, Stanley EH, Viswanathan GM (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449:1044–1048

    CAS  PubMed  Google Scholar 

  • el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A 200:575–589

    Google Scholar 

  • Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82:38–40

    CAS  Google Scholar 

  • Esch HE, Zhang S, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411:581–583

    CAS  PubMed  Google Scholar 

  • Etienne A (1980) The orientation of the Golden hamster to its nest-site after the elimination of various sensory cues. Experientia 36:1048–1050

    CAS  PubMed  Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    PubMed  Google Scholar 

  • Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209

    CAS  PubMed  Google Scholar 

  • Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 30:133–153

    Google Scholar 

  • Franz MO, Scholkopf B, Mallot HA, Bülthoff HH (1998) Learning view graphs for robot navigation. Auton Robot 5:111–125

    Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    CAS  PubMed  Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT Press, Cambridge

    Google Scholar 

  • Gibson B, Wilks T (2008) The use of self-motion cues and landmarks by Clark’s nutcrackers (Nucifraga columbiana) during a small-scale search task. Anim Behav 76:1305–1317

    Google Scholar 

  • Glasauer S, Amorim MA, Vitte E, Berthoz A (1994) Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Exp Brain Res 98:323–335

    CAS  PubMed  Google Scholar 

  • Goddard SM, Forward RB (1991) The role of underwater polarized-light pattern, in sun compass navigation of the grass shrimp, Palaemonetes vulgaris. J Comp Physiol A 169:479–491

    Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  PubMed  Google Scholar 

  • Görner P (1958) Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica (Cl.). Z Vergleich Physiol 41:111–153

    Google Scholar 

  • Gould-Beierle K, Kamil AC (1998) Use of landmarks in three species of food-storing corvids. Ethol 104:361–378

    Google Scholar 

  • Graham P, Cheng K (2009a) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937

    CAS  PubMed  Google Scholar 

  • Graham P, Cheng K (2009b) Which portion of the natural panorama is used for view based navigation in the Australian desert ant? J Comp Physiol A 195:681–689

    Google Scholar 

  • Gross CG (2002) Genealogy of the “grandmother cell”. Neuroscientist 8:512–518

    PubMed  Google Scholar 

  • Haferlach T, Wessnitzer J, Mangan M, Webb B (2007) Evolving a neural model of insect path integration. Adapt Behav 15:273–287

    Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  Google Scholar 

  • Hartmann G, Wehner R (1995) The ant’s path integration system: a neural architecture. Biol Cybern 73:483–497

    Google Scholar 

  • Hawryshyn CW (1992) Polarization vision in fish. Am Sci 80:164–175

    Google Scholar 

  • Helbig AJ (1990) Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46:755–758

    Google Scholar 

  • Hemmi JM, Zeil J (2003a) Burrow surveillance in fiddler crabs-I: description of behaviour. J Exp Biol 206:3935–3950

    PubMed  Google Scholar 

  • Hemmi JM, Zeil J (2003b) Burrow surveillance in fiddler crabs-II: the sensory cues. J Exp Biol 206:3951–3961

    PubMed  Google Scholar 

  • Hemmi JM, Zeil J (2003c) Robust judgement of inter-object distance by an arthropod. Nature 421:160–163

    CAS  PubMed  Google Scholar 

  • Hills TT (2006) Animal foraging and the evolution of goal-directed cognition. Cogn Sci 30:3–41

    PubMed  Google Scholar 

  • Hills TT (2011) The evolutionary origins of cognitive control. Topics Cogn Sci 3:231–237

    Google Scholar 

  • Hoffmann G (1983a) The random elements in the systematic search behavior of the desert isopod Hemilepistus reaumuri. Behav Ecol Sociobiol 13:81–92

    Google Scholar 

  • Hoffmann G (1983b) The search behavior of the desert isopod Hemilepistus reaumuri as compared with a systematic search. Behav Ecol Sociobiol 13:93–106

    Google Scholar 

  • Hoffmann G (1985a) The influence of landmarks on the systematic search behavior of the desert isopod Hemilepistus reaumuri I: role of the landmark made by the animal. Behav Ecol Sociobiol 17:325–334

    Google Scholar 

  • Hoffmann G (1985b) The influence of landmarks on the systematic search behavior of the desert isopod Hemilepistus reaumuri II problems with similar landmarks and their solution. Behav Ecol Sociobiol 17:335–348

    Google Scholar 

  • Hurvich LM, Jameson D (1957) An opponent-process theory of color vision. Psychol Rev 64:384–404

    PubMed  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    CAS  PubMed  Google Scholar 

  • Jakobi N (1997) Evolutionary robotics and the radical envelope-of-noise hypothesis. Adapt Behav 6:325–368

    Google Scholar 

  • Jansen VAA, Mashanova A, Petrovskii S (2012) Comment on “Lévy walks evolve through interaction between movement and environmental complexity”. Science 335:918-c

  • Kamil AC, Jones JE (1997) Clark’s nutcrackers learn geometric relationships among landmarks. Nature 390:276–279

    CAS  Google Scholar 

  • Knaden M, Wehner R (2005) Nest mark orientation in desert ants Cataglyphis: what does it do to the path integrator? Anim Behav 70:1349–1354

    Google Scholar 

  • Knaden M, Tinaut A, Cerda X, Wehner S, Wehner R (2005) Phylogeny of three parapatric species of desert ants, Cataglyphis bicolor, C. viatica, and C. savignyi: a comparison of mitochondrial DNA, nuclear DNA, and morphological data. Zool 108:167–177

    Google Scholar 

  • Knaden M, Tinaut A, Stökl J, Wehner R (2012) Molecular phylogeny of the desert ant genus Cataglyphis (Hymenoptera: Formicidae). Myrmecol News 16:123–132

    Google Scholar 

  • Kohler M, Wehner R (2005) Idiosyncratic route memories in desert ants, Melophorus bagoti: how do they interact with path integration vectors? Neurobiol Learn Mem 83:1–12

    PubMed  Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T (1996) How polarization-sensitive interneurones of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475

    PubMed  Google Scholar 

  • Lambrinos D, Maris M, Kobayashi H, Labhart T, Pfeifer R, Wehner R (1997) An autonomous agent navigating with a polarized light compass. Adapt Behav 6:131–161

    Google Scholar 

  • Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Auton Syst 30:39–64

    Google Scholar 

  • Lebhardt F, Ronacher B (2014) Interactions of the polarization and the sun compass in path integration of desert ants. J Comp Physiol A 200:711–720

    Google Scholar 

  • Legge ELG, Spetch ML, Cheng K (2010) Not using the obvious: desert ants, Melophorus bagoti, learn local vectors but not beacons in an arena. Anim Cogn 13:849–860

    PubMed  Google Scholar 

  • Lent D, Graham P, Collett TS (2013) Visual scene perception in navigating wood ants. Curr Biol 23:684–690

    CAS  PubMed  Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47:1940–1951

    Google Scholar 

  • Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–91

    CAS  PubMed  Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Google Scholar 

  • Maaswinkel H, Whishaw IQ (1999) Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation. Behav Brain Res 99:143–152

    CAS  PubMed  Google Scholar 

  • Margolis E, Laurence S (2013) In defense of nativism. Phil Stud 165:693–718

    Google Scholar 

  • Mataric MJ (1995) Designing and understanding adaptive group behavior. Adapt Behav 4:51–80

    Google Scholar 

  • Mather J (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168:491–497

    Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path integration and the neural basis of the ‘cognitive map’. Nature Rev Neurosci 7:663–678

    CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, New York

    Google Scholar 

  • Mittelstaedt M-L, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566

    Google Scholar 

  • Möller R (2001) Do insects use templates or parameters for landmark navigation? J Theor Biol 210:33–45

    PubMed  Google Scholar 

  • Möller R (2002) Insects could exploit UV-green contrast for landmark navigation. J Theor Biol 214:619–631

    PubMed  Google Scholar 

  • Moller P, Görner P (1994) Homing by path integration in the spider Agelena labyrinthica Clerck. J Comp Physiol A 174:221–229

    Google Scholar 

  • Möller R, Lambrinos D, Pfeifer R, Labhart T, Wehner R (1998) Modeling ant navigation with an autonomous agent. In: Pfeifer R, Blumberg B, Meyer J-A, Wilson SW (eds) From animals to animats. MIT Press, Cambridge, pp 185–194

    Google Scholar 

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    PubMed Central  PubMed  Google Scholar 

  • Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530

    Google Scholar 

  • Müller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20:1368–1371

    PubMed  Google Scholar 

  • Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Aust J Zool 53:301–311

    Google Scholar 

  • Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti I: proportional path integration takes the ant half-way home. J Exp Biol 210:1798–1803

    PubMed  Google Scholar 

  • Narendra A, Si A, Sulikowski D, Cheng K (2007) Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav Ecol Sociobiol 61:1543–1553

    Google Scholar 

  • Narendra A, Cheng K, Sulikowski D, Wehner R (2008) Search strategies of ants in landmark-rich habitats. J Comp Physiol A 194:929–938

    Google Scholar 

  • Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B 280:20130683

    PubMed Central  PubMed  Google Scholar 

  • Nicholson DJ, Judd PD, Cartwright BA, Collett TS (1999) Learning walks and landmark guidance in wood ants (Formica rufa). J Exp Biol 202:1831–1838

    PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116

    Google Scholar 

  • Osborne JL, Smith A, Clark SJ, Reynolds DR, Barron MC, Lim KS, Reynolds AM (2013) The ontogeny of bumblebee flight trajectories: from naive explorers to experienced foragers. PLoS ONE 8:e78681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearce JM, Bouton ME (2001) Theories of associative learning in animals. Annu Rev Psychol 52:111–139

    CAS  PubMed  Google Scholar 

  • Potegal M (1982) Vestibular and neostriatal contributions to spatial orientation. In: Potegal M (ed) Spatial abilities: development and physiological foundations. Academic Press, New York, pp 361–387

    Google Scholar 

  • Raichlen DA, Wood BM, Gordon AD, Mabulla AZP, Marlowe FW, Pontzer H (2014) Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proc Natl Acad Sci USA 111:728–733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds AM (2014) Mussels realize Weierstrassian Lévy walks as composite correlated random walks. Sci Rep 4:4409

    PubMed Central  PubMed  Google Scholar 

  • Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm: random search patterns and mechanisms. Ecol 90:877–887

    CAS  Google Scholar 

  • Reynolds AM, Smith AD, Menzel R, Greggers U, Reynolds DR, Riley JR (2007a) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961

    PubMed  Google Scholar 

  • Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007b) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210:3763–3770

    PubMed  Google Scholar 

  • Reynolds AM, Schultheiss P, Cheng K (2013) Are Lévy flight patterns derived from the Weber–Fechner law in distance estimation? Behav Ecol Sociobiol 67:1219–1226

    Google Scholar 

  • Reynolds AM, Schultheiss P, Cheng K (2014) Does the Australian desert ant Melophorus bagoti approximate a Lévy search by an intrinsic bi-modal walk? J Theor Biol 340:17–22

    PubMed  Google Scholar 

  • Rich PD, Liaw H-P, Lee AK (2014) Large environments reveal the statistical structure governing hippocampal representations. Science 345:814–817

    CAS  PubMed  Google Scholar 

  • Ritchie BF (1947) Studies in spatial learning III: two paths to the same location and two paths to two different locations. J Exp Psychol 37:25–38

    CAS  PubMed  Google Scholar 

  • Roitblat HL, Bever TG, Terrace HS (1984) Animal cognition. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Ronacher B (2008) Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol News 11:53–62

    Google Scholar 

  • Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. J Comp Physiol A 177:21–27

    Google Scholar 

  • Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R (2000) Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J Exp Biol 203:1113–1121

    CAS  PubMed  Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Samsonovich A, McNaughton B (1997) Path integration and cognitive mapping in a continuous attractor neural netwok model. J Neurosci 17:5900–5920

    CAS  PubMed  Google Scholar 

  • Santschi F (1911) Sur le mécanisme de l’orientation chez les fourmis. Revue Suisse Zool 19:303–338

    Google Scholar 

  • Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038

    Google Scholar 

  • Schultheiss P, Cheng K (2013) Finding food: outbound searching behavior in the Australian desert ant Melophorus bagoti. Behav Ecol 24:128–135

    Google Scholar 

  • Schultheiss P, Nooten SS (2013) Foraging patterns and strategies in an Australian desert ant. Austral Ecol 38:942–951

    Google Scholar 

  • Schultheiss P, Schwarz S, Cheng K, Wehner R (2012) Foraging ecology of an Australian salt-pan desert ant (genus Melophorus). Aust J Zool 60:311–319

    Google Scholar 

  • Schultheiss P, Wystrach A, Legge ELG, Cheng K (2013) Information content of visual scenes influences systematic search of desert ants. J Exp Biol 216:742–749

    PubMed  Google Scholar 

  • Schultheiss P, Cheng K, Reynolds AM (2015) Searching behavior in social Hymenoptera. Learn Motiv (in press)

  • Séguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol A 173:103–113

    PubMed  Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Sheynikhovich D, Chavarriaga R, Strösslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigational model. Psychol Rev 116:540–566

    PubMed  Google Scholar 

  • Sims DW, Reynolds AM, Humphries NE, Southall EJ, Wearmouth VJ, Metcalfe B, Twitchett RJ (2014) Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proc Natl Acad Sci USA 111:11073–11078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spelke ES, Kinzler KD (2007) Core knowledge. Dev Sci 10:89–96

    PubMed  Google Scholar 

  • Spetch ML, Cheng K, MacDonald SE, Linkenhoker BA, Kelly DM, Doerkson SR (1997) Use of landmark configuration in pigeons and humans II: generality across search tasks. J Comp Psychol 111:14–24

    Google Scholar 

  • Srinivasan MV (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 91:413–460

    CAS  PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2513–2522

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang S, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:757–920

    Google Scholar 

  • Steck K, Hansson BS, Knaden M (2009) Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front Zool 6:5

    PubMed Central  PubMed  Google Scholar 

  • Stieb SM, Hellwig A, Wehner R, Rössler W (2010a) Visual experience affects both behavioral and neuronal aspects in the individual life history of the desert ant Cataglyphis fortis. Dev Neurobiol 72:729–742

    Google Scholar 

  • Stieb SM, Muenz TS, Wehner R, Rössler W (2010b) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423

    PubMed  Google Scholar 

  • Stieb SM, Kelber C, Wehner R, Rössler W (2011) Antennal-lobe organization in desert ants of the genus Cataglyphis. Brain Behav Evol 77:136–146

    PubMed  Google Scholar 

  • Stone T, Mangan M, Ardin P, Webb B (2014) Sky segmentation with ultraviolet images can be used for navigation. In: Proceedings of the 2014 Robotics: Science and Systems Conference X. http://roboticsproceedings.org/rss10/index.html

  • Stürzl W, Zeil J (2007) Depth, contrast and view-based homing in outdoor scenes. Biol Cybern 96:519–531

    PubMed  Google Scholar 

  • Taube JS (1998) Head direction cells and the neurophysiological basis for a sense of direction. Prog Neurobiol 55:225–256

    CAS  PubMed  Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats I: description and quantitative analysis. J Neurosci 10:420–435

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats II: effects of environmental manipulations. J Neurosci 10:436–447

    CAS  PubMed  Google Scholar 

  • Tchernichovski O, Benjamini Y, Golani I (1998) The dynamics of long-term exploration in the rat-part I: a phase-plane analysis of the relationship between location and velocity. Biol Cybern 78:423–432

    CAS  PubMed  Google Scholar 

  • Teichroeb JA, Chapman CA (2014) Sensory information and associative cues used in food detection by wild vervet monkeys. Anim Cogn 17:517–528

    PubMed  Google Scholar 

  • Tinbergen N (1932) Über die Orientierung des Bienenwolfes (Philanthus triangulum, Fabr.). Z Vergl Physiol 16:305–334

    Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    CAS  PubMed  Google Scholar 

  • Towne WF (2008) Honeybees can learn the relationship between the solar ephemeris and a newly-experienced landscape. J Exp Biol 211:3737–3743

    PubMed  Google Scholar 

  • Towne WF, Moscrip H (2008) The connection between landscapes and the solar ephemeris in honeybees. J Exp Biol 211:3729–3736

    PubMed  Google Scholar 

  • Trullier O, Wiener SI, Berthoz A, Meyer JA (1997) Biologically based artificial navigation systems: review and prospects. Prog Neurobiol 51:483–544

    CAS  PubMed  Google Scholar 

  • Vickerstaff RJ, Cheung A (2010) Which coordinate system for modelling path integration? J Theor Biol 263:242–261

    PubMed  Google Scholar 

  • Vickerstaff RJ, Di Paolo EA (2005) Evolving neural models of path integration. J Exp Biol 208:3349–3366

    CAS  PubMed  Google Scholar 

  • Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415

    CAS  Google Scholar 

  • Viswanathan GM, Buldyrev SV, Havlin S, da Luz MGE, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401:911–914

    CAS  PubMed  Google Scholar 

  • von Frisch K (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften 35:38–43

    Google Scholar 

  • von Frisch K (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    CAS  PubMed  Google Scholar 

  • von Frisch K (1953) The dancing bees. Harcourt, Brace & World, New York

  • von Frisch K (1967) The dance language and orientation of bees. Belknap, Cambridge

  • von Frisch K, Lindauer M (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–253

    Google Scholar 

  • Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    PubMed  Google Scholar 

  • Warrant E, Dacke M (2011) Vision and visual navigation in nocturnal insects. Annu Rev Entomol 56:239–254

    CAS  PubMed  Google Scholar 

  • Webb B (2000) What does robotics offer animal behaviour? Anim Behav 60:545–558

    PubMed  Google Scholar 

  • Wehner R (1967) Pattern recognition in bees. Nature 215:1244–1248

    CAS  PubMed  Google Scholar 

  • Wehner R (1968) Optische Orientierungsmechanismen im Heimkehr-Verhalten von Cataglyphis bicolor (Formicidae, Hymenoptera). Revue Suisse Zool 75:1076–1085

    Google Scholar 

  • Wehner R (1987a) ‘Matched filters’: neural models of the external world. J Comp Physiol A 161:511–531

    Google Scholar 

  • Wehner R (1987b) Spatial organization of the foraging behavior in individually searching desert ants, Cataglyphis (Sahara desert) and Ocymyrmex (Namib desert). In: Pasteels JM, Deneubourg JM (eds) From individual to collective behavior in insects. Birkhäuser, Basel, pp 15–42

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschritte Zool 39:103–143

    Google Scholar 

  • Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 145–185

    Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    CAS  Google Scholar 

  • Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecol News 12:85–96

    Google Scholar 

  • Wehner R (2013) Life as a cataglyphologist: and beyond. Annu Rev Entomol 58:1–18

    CAS  PubMed  Google Scholar 

  • Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proc Natl Acad Sci USA 103:12575–12579

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants, genus Cataglyphis (Formicidae, Hymenoptera). Experientia 35:1569–1571

    Google Scholar 

  • Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338

    Google Scholar 

  • Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30

    Google Scholar 

  • Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne’s thread. Ethol Ecol Evol 2:27–48

    Google Scholar 

  • Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants Cataglyphis bicolor (Hymenoptera: Formicidae). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Wehner R, Marsh AC, Wehner S (1992) Desert ants on a thermal tightrope. Nature 357:586–587

    Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

  • Wehner R, Meier C, Zollikofer C (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:240–250

    Google Scholar 

  • Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79

    CAS  PubMed  Google Scholar 

  • West SA, El Mouden C, Gardner A (2011) Sixteen common misconceptions about the evolution of cooperation in humans. Evol Hum Behav 32:231–262

    Google Scholar 

  • Wiener J, Shettleworth S, Bingman VP, Cheng K, Healy S, Jacobs LF, Jeffery KJ, Mallot HA, Menzel R, Newcombe NS (2011) Animal navigation: a synthesis. In: Menzel R, Fischer J (eds) Animal thinking: contemporary issues in comparative cognition. MIT Press, Cambridge, pp 51–76

    Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312:1965–1967

    CAS  PubMed  Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210:198–207

    PubMed  Google Scholar 

  • Wittmann T, Schwegler H (1995) Path integration: a network model. Biol Cybern 73:569–575

    Google Scholar 

  • Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641

    PubMed  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2011) Landmarks or panoramas: what do navigating ants attend to for guidance? Front Zool 8:21

    PubMed Central  PubMed  Google Scholar 

  • Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215:44–55

    PubMed  Google Scholar 

  • Wystrach A, Mangan M, Philippides A, Graham P (2013a) Snapshots in ants? New interpretations of paradigmatic experiments. J Exp Biol 216:1766–1770

    PubMed  Google Scholar 

  • Wystrach A, Schwarz S, Baniel A, Cheng K (2013b) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B 280:20131677

    PubMed Central  PubMed  Google Scholar 

  • Wystrach A, Philippides A, Aurejac A, Cheng K, Graham P (2014a) Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J Comp Physiol A 200:615–626

    Google Scholar 

  • Wystrach A, Schwarz S, Schultheiss P, Baniel A, Cheng K (2014b) Multiple sources of celestial compass information in the Central Australian desert ant Melophorus bagoti. J Comp Physiol A 200:591–601

    Google Scholar 

  • Zeil J (1993a) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) I: description of flight. J Comp Physiol A 172:189–205

    Google Scholar 

  • Zeil J (1993b) Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) II: similarities between orientation and return flights and the use of motion parallax. J Comp Physiol A 172:207–222

    Google Scholar 

  • Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293

    CAS  PubMed  Google Scholar 

  • Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A 192:1–25

    Google Scholar 

  • Zeil J, Zanker JM (1997) A glimpse into crabworld. Vision Res 37:3417–3426

    CAS  PubMed  Google Scholar 

  • Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am 20:450–469

    Google Scholar 

  • Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc B 369:20130034

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Tom Collett, Sibylle Wehner, and an anonymous reviewer for comments on this manuscript.

Conflict of interst

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Freas, C.A. Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation. J Comp Physiol A 201, 517–532 (2015). https://doi.org/10.1007/s00359-015-0984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-0984-9

Keywords

Navigation