Skip to main content

Advertisement

Log in

The nervous and the immune systems: conspicuous physiological analogies

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

From all biological constituents of complex organisms, two are highly sophisticated: the nervous and the immune systems. Interestingly, their goals and processes appear to be distant from each other; however, their physiological mechanisms keep notorious similarities. Both construct intelligence, learn from experience, and keep memory. Their precise responses to innumerable stimuli are delicately modulated, and the exposure of the individual to thousands of potential challenges integrates their functionality; they use a large part of their constituents not in excitatory activities but in the maintenance of inhibitory mechanisms to keep silent vast intrinsic potentialities. The nervous and immune systems are integrated by a basic cell lineage (neurons and lymphocytes, respectively) but each embodies countless cell subgroups with different and specialized deeds which, in contrast with cells from other organs, labyrinthine molecular arrangements conduct to “one cell, one function”. Also, nervous and immune actions confer identity that differentiates every individual from countless others in the same species. Both systems regulate and potentiate their responses aided by countless biological resources of variable intensity: hormones, peptides, cytokines, pro-inflammatory molecules, etc. How the immune and the nervous systems buildup memory, learning capability, and exquisite control of excitatory/inhibitory mechanisms constitute major intellectual challenges for contemporary research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ader R, Cohen N, Felten D (1995) Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet 345:399

    Article  Google Scholar 

  • Agnati LF, Fuxe KG, Goncharova LB, Tarakanov AO (2008) Receptor mosaics of neural and immune communication: possible implications for basal ganglia functions. Brain Res Rev 58:400–414

    Article  CAS  PubMed  Google Scholar 

  • Arévalo-Martín A, García-Ovejero D, Gómez O, Rubio-Araiz A, Navarro-Galve B, Guaza C et al (2008) CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies. Br J Pharmacol 153:216–225

    Article  PubMed Central  PubMed  Google Scholar 

  • Arima Y, Harada M, Kamimura D, Park JH, Kawano F, Yull FE et al (2012) Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148:447–457

    Article  CAS  PubMed  Google Scholar 

  • Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C et al (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:963–970

    Article  Google Scholar 

  • Bastos LF, Medeiros DC, Vieira RP, Watkins LR, Coelho MM, Moraes MF (2012) Intraneural dexamethasone applied simultaneously to rat sciatic nerve constriction delays the development of hyperalgesia and allodynia. Neurosci Lett 510:20–23

    Article  CAS  PubMed  Google Scholar 

  • Bonneau RH, Padgett DA, Sheridan JF (2007) Twenty years of psychoneuroimmunology and viral infections in brain, behavior, and immunity. Brain Behav Immun 21:273–280

    Article  PubMed  Google Scholar 

  • Chiu IM, von Hehn CA, Woolf CJ (2012) Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 15:1063–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen IR (1992) The cognitive paradigm and the immunological homunculus. Immunol Today 13:490–494

    Article  CAS  PubMed  Google Scholar 

  • Cohen IR (2000) Discrimination and dialogue in the immune system. Immunology 12:215–219

    CAS  Google Scholar 

  • Cohen IR, Quintana FJ, Mimran A (2004) Tregs in T cell vaccination: exploring the regulation of regulation. J Clin Invest 114:1227–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colton CA (2013) Microglial-neuronal interactions during neurodegenerative diseases. J Neuroimmune Pharmacol. 8:4–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Coogan AN, Wyse CA (2008) Neuroimmunology of the circadian clock. Brain Res 1232:104–112

    Article  CAS  PubMed  Google Scholar 

  • de Kloet AD, Krause EG, Shi PD, Zubcevic J, Raizada MK, Sumners C (2013) Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol Ther 138:428–440

    Article  PubMed Central  PubMed  Google Scholar 

  • Del Brutto O, Garcia E, Talamas O, Sotelo J (1988) Sex-related severity of inflammation in parenchymal brain cysticercosis. Arch Int Med 148:544–546

    Article  Google Scholar 

  • Dimitrijevic M, Stanojevic S, Kustrimovic N, Leposavic G (2012) End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology. Immunol Res 52:64–80

    Article  CAS  PubMed  Google Scholar 

  • Editorial (2012) Focus on neuro-immune interactions. Nat Neurosci 15:1055

    Article  Google Scholar 

  • Erickson MA, Dohi K, Banks WA (2012) Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 19:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffin WS (2013) Neuroinflammatory cytokine signaling and Alzheimer’s disease. N Engl J Med 368:770–771

    Article  CAS  PubMed  Google Scholar 

  • Guillot X, Semerano L, Decker P, Falgarone G, Boissier MC (2012) Pain and immunity. Jt Bone Spine 79:228–236

    Article  Google Scholar 

  • Haddad JJ (2008) On the mechanisms and putative pathways involving neuroimmune interactions. Biochem Biophys Res Commun. 370:531–535

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM, Krumbiegel D (2013) Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol 108:1066–1074

    Article  CAS  PubMed  Google Scholar 

  • International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O´Donovan MC et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    CAS  PubMed  Google Scholar 

  • Jerne NK (1973) The immune system. Sci Am 229:52–60

    Article  CAS  PubMed  Google Scholar 

  • Jones HP (2012) Immune cells listen to what stress is saying: neuroendocrine receptors orchestrate immune function. Methods Mol Biol. 934:77–87

    Article  PubMed  Google Scholar 

  • Kadhim H, Deltenre P, Segers V, Sébire G (2012) Selective expression of a neuromodulatory cytokine (IL-2) in specific brainstem neurovegetative centers: a possible final common neuro-molecular pathway in dying patients. Med Hypotheses 78:793–795

    Article  CAS  PubMed  Google Scholar 

  • Kipnis J, Gadani S, Derecki NC (2012) Pro-cognitive properties of T cells. Nat Rev Immunol 12:663–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15:1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Kradin RL (1995) The immune self: a selectionist theory of recognition. Learning, and remembering within the immune system. Perspect Biol Med 38:605

    Article  CAS  PubMed  Google Scholar 

  • Laman JD, Weller RO (2013) Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol. 8(4):840–856

    Article  PubMed  Google Scholar 

  • Lowenstein PR (2002) Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 23:23–26

    Article  CAS  PubMed  Google Scholar 

  • Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG (2007) Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 7:347–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    Article  CAS  PubMed  Google Scholar 

  • McConell MJ, Huang YH, Datwani A, Shatz CJ (2009) H2-Kb and H2-Db regulate cerebellar long-term depression and limit motor learning. PNAS 106:6784–6789

    Article  Google Scholar 

  • McEwen BS (2013) Hormones and the social brain. Science 339:279–280

    Article  PubMed  Google Scholar 

  • Mignini F, Streccioni V, Amenta F (2003) Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 23:1–25

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado E, Molina-Holgado F (2010) Mending the broken brain: neuroimmune interactions in neurogenesis. J Neurochem 114:1277–1290

    CAS  PubMed  Google Scholar 

  • Mouihate A, Pittman QJ (2003) Neuroimmune response to endogenous and exogenous pyrogens is differently modulated by sex steroids. Endocrinology 144:2454–2460

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal KM, Dailey CA, Jahn JL, Rodriguez E, Son NH, Sweedler JV, Silver R (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36:2347–2359

    Article  PubMed Central  PubMed  Google Scholar 

  • Otmishi P, Gordon J, El-Oshar S, Li H, Guardiola J, Saad M et al (2008) Neuroimmune interaction in inflammatory diseases. Clin Med Circ Respir Pulm Med. 2:35–44

    CAS  Google Scholar 

  • Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (1997) Tracing molecules that make the brain-body connection. Science 275:930

    Article  CAS  PubMed  Google Scholar 

  • Raansohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077

    Article  Google Scholar 

  • Raap U, Wardlaw AJ (2008) A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 9:731–738

    Article  Google Scholar 

  • Rettori V (2007) Neuroimmune interactions. Exp Physiol 92:799–800

    Article  PubMed  Google Scholar 

  • Rettori V, Fernandez-Solari J, Mohn C, Zorrilla Zubilete MA, de la Cal C, Prestifilippo JP et al (2009) Nitric oxide at the crossroad of immunoneuroendocrine interactions. Ann N Y Acad Sci 1153:35–47

    Article  CAS  PubMed  Google Scholar 

  • Romero-Sandoval EA, Horvath RJ, DeLeo JA (2008) Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 9:726–734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saldanha CJ, Burstein SR, Duncan KA (2013) Induced synthesis of estrogens by glia in the songbird brain. J Neuroendocrinol 25(11):1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Romanovsky AA, Scammell TE (2012) Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci 15:1088–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ et al (2013) The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4:17–27

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitz T, Chew LJ (2008) Cytokines and myelination in the central nervous system. Sci World J. 8:1119–1147

    Article  CAS  Google Scholar 

  • Schwarz JM, Bilbo SD (2012) Sex, glia, and development: interactions in health and disease. Horm Behav 62:243–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silver R, Curley JP (2013) Mast cells on the mind: new insights and opportunities. Trends Neurosci 13:112–114

    Google Scholar 

  • Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. Faseb J. 26:3103–3117

    Article  CAS  PubMed  Google Scholar 

  • Sotelo J (1999) Conspicuous similarities between the nervous and immune systems. Arch Med Res 30:345–346

    Article  CAS  PubMed  Google Scholar 

  • Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian L, Ma L, Kaarela T, Li Z (2012) Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J Neuroinflamm 9:155

    Article  CAS  Google Scholar 

  • Veres TZ, Rochlitzer S, Shevchenko M, Fuchs B, Prenzler F, Nassenstein C et al (2007) Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. Am J Respir Cell Mol Biol 37:553–561

    Article  CAS  PubMed  Google Scholar 

  • Weigent DA, Blalock JE (1997) Neuroendocrine-immune interactions. In: Keane RW, Hickey W (eds) Immunology of the nervous system. Oxford University Press, Oxford, p 548

  • Welsh CJ, Steelman AJ, Mi W, Young CR, Storts R, Welsh TH Jr et al (2009) Neuroimmune interactions in a model of multiple sclerosis. Ann N Y Acad Sci 1153:209–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson LL, Bilbo SD (2013) Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability. Brain Behav Immun 30:186–194

    Article  CAS  PubMed  Google Scholar 

  • Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    Article  CAS  PubMed  Google Scholar 

  • York JM, Blevins NA, Baynard T, Freund GG (2012) Mouse testing methods in psychoneuroimmunology: an overview of how to measure sickness, depressive/anxietal, cognitive, and physical activity behaviors. Methods Mol Biol 934:243–276

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

I have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Sotelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotelo, J. The nervous and the immune systems: conspicuous physiological analogies. J Comp Physiol A 201, 185–194 (2015). https://doi.org/10.1007/s00359-014-0961-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0961-8

Keywords

Navigation