Skip to main content
Log in

Size does not matter: size-invariant echo-acoustic object classification

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Echolocating bats can not only extract spatial information from the auditory analysis of their ultrasonic emissions, they can also discriminate, classify and identify the three-dimensional shape of objects reflecting their emissions. Effective object recognition requires the segregation of size and shape information. Previous studies have shown that, like in visual object recognition, bats can transfer an echo-acoustic object discrimination task to objects of different size and that they spontaneously classify scaled versions of virtual echo-acoustic objects according to trained virtual-object standards. The current study aims to bridge the gap between these previous findings using a different class of real objects and a classification—instead of a discrimination paradigm. Echolocating bats (Phyllostomus discolor) were trained to classify an object as either a sphere or an hour-glass shaped object. The bats spontaneously generalised this classification to objects of the same shape. The generalisation cannot be explained based on similarities of the power spectra or temporal structures of the echo-acoustic object images and thus require dedicated neural mechanisms dealing with size-invariant echo-acoustic object analysis. Control experiments with human listeners classifying the echo-acoustic images of the objects confirm the universal validity of auditory size invariance. The current data thus corroborate and extend previous psychophysical evidence for sonar auditory-object normalisation and suggest that the underlying auditory mechanisms following the initial neural extraction of the echo-acoustic images in echolocating bats may be very similar in bats and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

2-AFC:

Two-alternative, forced-choice

LED:

Light-emitting diode

IR:

Impulse response

References

  • Alves-Pinto A, Lopez-Poveda EA (2005) Detection of high-frequency spectral notches as a function of level. J Acoust Soc Am 118:2458–2469

    Article  PubMed  Google Scholar 

  • Aubauer R, Au WWL (1998) Phantom echo generation: a new technique for investigating dolphin echolocation. J Acoust Soc Am 104:1165–1170

    Article  PubMed  CAS  Google Scholar 

  • Falk B, Williams T, Aytekin M, Moss CF (2011) Adaptive behavior for texture discrimination by the free-flying big brown bat, Eptesicus fuscus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:491–503

    Article  PubMed  Google Scholar 

  • Firzlaff U, Schuchmann M, Grunwald JE, Schuller G, Wiegrebe L (2007) Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biol 5:e100

    Article  PubMed  Google Scholar 

  • Fiser J, Biederman I (1995) Size invariance in visual object priming of gray-scale images. Perception 24:741–748

    Article  PubMed  CAS  Google Scholar 

  • Furmanski CS, Engel SA (2000) Perceptual learning in object recognition: object specificity and size Invariance. Vision Res 40:473–484

    Article  PubMed  CAS  Google Scholar 

  • Genzel D, Wiegrebe L (2008) Time-variant spectral peak and notch detection in echolocation-call sequences in bats. J Exp Biol 211:9–14

    Article  PubMed  Google Scholar 

  • Goerlitz HR, Hubner M, Wiegrebe L (2008) Comparing passive and active hearing: spectral analysis of transient sounds in bats. J Exp Biol 211:1850–1858

    Article  PubMed  Google Scholar 

  • Green DM (1996) Discrimination changes in spectral shape: profile analysis. Acustica 82:S31–S36

    Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    Article  PubMed  CAS  Google Scholar 

  • Grunwald JE, Schornich S, Wiegrebe L (2004) Classification of natural textures in echolocation. Proc Natl Acad Sci USA 101:5670–5674

    Article  PubMed  CAS  Google Scholar 

  • Houben MMJ, Kohlrausch A, Hermes DJ (2004) Perception of the size and speed of rolling balls by sound. Speech Commun 43:331–345

    Article  Google Scholar 

  • Houben MMJ, Kohlrausch A, Hermes DJ (2005) The contribution of spectral and temporal information to the auditory perception of the size and speed of rolling balls. Acta Acustica United Acustica 91:1007–1015

    Google Scholar 

  • Irino T, Patterson RD (2002) Segregating information about the size and shape of the vocal tract using a time-domain auditory model: the stabilised wavelet-mellin transform. Speech Commun 36:181–203

    Article  Google Scholar 

  • Ives DT, Smith DR, Patterson RD (2005) Discrimination of speaker size from syllable phrases. J Acoust Soc Am 118:3816–3822

    Article  PubMed  Google Scholar 

  • Krumbholz K, Schmidt S (1999) Perception of complex tones and its analogy to echo spectral analysis in the bat, Megaderma lyra. J Acoust Soc Am 105:898–911

    Article  PubMed  CAS  Google Scholar 

  • Larsby B, Arlinger S (1998) A method for evaluating temporal, spectral and combined temporal-spectral resolution of hearing. Scand Audiol 27:3–12

    Article  PubMed  CAS  Google Scholar 

  • Larsen A, Bundesen C (1978) Size scaling in visual pattern recognition. J Exp Psychol Hum Percept Perform 4:1–20

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones TJ, Luckhurst L (2002) Effects of plane rotation, task, and complexity on recognition of familiar and chimeric objects. Mem Cognit 30:499–510

    Article  PubMed  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621

    Article  PubMed  CAS  Google Scholar 

  • Macpherson EA, Middlebrooks JC (2003) Vertical-plane sound localization probed with ripple-spectrum noise. J Acoust Soc Am 114:430–445

    Article  PubMed  Google Scholar 

  • Nowak RM (1994) Walker’s Bats of the World. Johns Hopkins University Press, London

    Google Scholar 

  • Preisler A, Schmidt S (1998) Spontaneous classification of complex tones at high and ultrasonic frequencies in the bat, Megaderma lyra. J Acoust Soc Am 103:2595–2607

    Article  PubMed  CAS  Google Scholar 

  • Sams M, Salmelin R (1994) Evidence of Sharp Frequency Tuning in the Human Auditory-Cortex. Hear Res 75:67–74

    Article  PubMed  CAS  Google Scholar 

  • Sawamura H, Georgieva S, Vogels R, Vanduffel W, Orban GA (2005) Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. J Neurosci 25:4294–4306

    Article  PubMed  CAS  Google Scholar 

  • Schebesch G, Lingner A, Firzlaff U, Wiegrebe L, Grothe B (2010) Perception and neural representation of size-variant human vowels in the Mongolian gerbil (Meriones unguiculatus). Hear Res 261:1–8

    Article  PubMed  Google Scholar 

  • Schmidt S (1988) Evidence for a spectral basis of texture perception in bat sonar. Nature 331:617–619

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S (1992) Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91:2203–2223

    Article  PubMed  CAS  Google Scholar 

  • Schörnich S, Wiegrebe L (2008) Phase sensitivity in bat sonar revisited. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(1):61–67

    Google Scholar 

  • Simmons JA (2012) Bats use a neuronally implemented computational acoustic model to form sonar images. Curr Opin Neurobiol 22:311–319

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Holderied MW, von Helversen O (2006) Size discrimination of hollow hemispheres by echolocation in a nectar feeding bat. J Exp Biol 209:3599–3609

    Article  PubMed  Google Scholar 

  • Smith DR, Patterson RD (2005) The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age. J Acoust Soc Am 118:3177–3186

    Article  PubMed  Google Scholar 

  • Smith DR, Patterson RD, Turner R, Kawahara H, Irino T (2005) The processing and perception of size information in speech sounds. J Acoust Soc Am 117:305–318

    Article  PubMed  Google Scholar 

  • van Dinther R, Patterson RD (2006) Perception of acoustic scale and size in musical instrument sounds. J Acoust Soc Am 120:2158–2176

    Article  PubMed  Google Scholar 

  • von der Emde G (2004) Distance and shape: perception of the 3-dimensional world by weakly electric fish. J Physiol Paris 98:67–80

    Article  PubMed  Google Scholar 

  • von Helversen D (2004) Object classification by echolocation in nectar feeding bats: size-independent generalization of shape. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:515–521

    Google Scholar 

  • von Helversen D, von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760

    Article  Google Scholar 

  • Warren JD, Jennings AR, Griffiths TD (2005) Analysis of the spectral envelope of sounds by the human brain. Neuroimage 24:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Weissenbacher P, Wiegrebe L (2003) Classification of virtual objects in the echolocating bat, Megaderma lyra. Behav Neurosci 117:833–839

    Article  PubMed  Google Scholar 

  • Wiegrebe L (2008) An autocorrelation model of bat sonar. Biol Cybern 98:587–595

    Article  PubMed  Google Scholar 

  • Wiegrebe L, Schmidt S (1996) Temporal integration in the echolocating bat, Megaderma lyra. Hear Res 102:35–42

    Article  PubMed  CAS  Google Scholar 

  • Wittekindt A, Drexl M, Kossl M (2005) Cochlear sensitivity in the lesser spear-nosed bat, Phyllostomus discolor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:31–36

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the ‘Volkswagenstiftung’ (I/79 780 and I/83 838 to Lutz Wiegrebe). We would also like to thank two anonymous reviewers for their constructive comments on an earlier version of the manuscript. The experiments are non-invasive and do not require an experimental license. Permission to keep and breed the animals was issued from the Regierung von Oberbayern (5.1-568-Ste, Aktenzeichen der Haltungsgenehmigung).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Genzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genzel, D., Wiegrebe, L. Size does not matter: size-invariant echo-acoustic object classification. J Comp Physiol A 199, 159–168 (2013). https://doi.org/10.1007/s00359-012-0777-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0777-3

Keywords

Navigation