Skip to main content
Log in

Centrally patterned rhythmic activity integrated by a peripheral circuit linking multiple oscillators

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The central pattern generator for heartbeat in the medicinal leech, Hirudo generates rhythmic activity conveyed by heart excitor motor neurons in segments 3–18 to coordinate the bilateral tubular hearts and side vessels. We focus on behavior and the influence of previously un-described peripheral nerve circuitry. Extracellular recordings from the valve junction (VJ) where afferent vessels join the heart tube were combined with optical recording of contractions. Action potential bursts at VJs occurred in advance of heart tube and afferent vessel contractions. Transections of nerves were performed to reduce the output of the central pattern generator reaching the heart tube. Muscle contractions persisted but with a less regular rhythm despite normal central pattern generator rhythmicity. With no connections between the central pattern generator and heart tube, a much slower rhythm became manifest. Heart excitor neuron recordings showed that peripheral activity might contribute to the disruption of centrally entrained contractions. In the model presented, peripheral activity would normally modify the activity actually reaching the muscle. We also propose that the fundamental efferent unit is not a single heart excitor neuron, but rather is a functionally defined unit of about three adjacent motor neurons and the peripheral assembly of coupled peripheral oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AV:

Afferent vessel

ANR:

Anterior nerve root

CPG:

Central pattern generator

FMRFamide:

Phenylalanine-methionine-arginine-phenylalanine-NH2

HE:

Heart excitor

HT:

Heart tube

IPSP:

Inhibitory post-synaptic potential

Lav:

Latero-abdominal vessel

Ldv:

Latero-dorsal vessel

Llv:

Latero-lateral vessel

M:

Midbody segment

VJ:

Valve junction

References

  • Arbas EA, Calabrese RL (1990) Leydig neuron activity modulates heartbeat in the medicinal leech. J Comp Physiol A 167:665–671

    Article  PubMed  CAS  Google Scholar 

  • Brezina V, Orekhova IV, Weiss KR (2000) The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors. J Neurophysiol 83:207–231

    PubMed  CAS  Google Scholar 

  • Calabrese RL, Maranto AR (1984) Neural control of the hearts in the leech, Hirudo medicinalis. III. Regulation of myogenicity and muscle tension by heart accessory neurons. J Comp Physiol A 154:393–406

    Article  Google Scholar 

  • Calabrese RL, Maranto AR (1986) Cholinergic action on the heart of the leech, Hirudo medicinalis. J Exp Biol 125:205–224

    PubMed  CAS  Google Scholar 

  • Calabrese RL, Norris BJ, Wenning A, Wright TM (2011) Coping with variability in small neuronal networks. Integr Comp Biol. doi:10.1093/icb/icr074

  • Cang J, Friesen WO (2000) Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors can change intersegmental phase relationships. J Neurosci 20:7822–7829

    PubMed  CAS  Google Scholar 

  • Cang J, Friesen WO (2002) Model for intersegmental coordination of leech swimming: central and sensory mechanisms. J Neurophysiol 87:2760–2769

    PubMed  Google Scholar 

  • Chen J, Iwasaki T, Friesen WO (2011) Mechanisms underlying rhythmic locomotion: dynamics of muscle activation. J Exp Biol 214:1955–1964

    Article  PubMed  Google Scholar 

  • Cohen AH, Wallen P (1980) The neuronal correlate of locomotion in fish: “fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498

    Article  PubMed  CAS  Google Scholar 

  • Deller SRT, MacMillan DL (1989) Entrainment of the swimmeret rhythm of the crayfish to controlled movements of some of the appendages. J Exp Biol 144:257–278

    Google Scholar 

  • Dickinson PS, Nagy F, Moulins M (1988) Control of central pattern generators by an identified neurone in crustacean: activation of the gastric mill motor pattern by a neurone known to modulate the pyloric network. J Exp Biol 136:53–87

    Google Scholar 

  • Garcia PS, Wright TM, Cunningham IR, Calabrese RL (2008) Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator. J Neurophysiol 100:1354–1371

    Article  PubMed  Google Scholar 

  • Goaillard JM, Taylor AL, Schulz DJ, Marder E (2009) Functional consequences of animal-to-animal variation in circuit parameters. Nat Neurosci 12:1424–1430

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Parker D, Manira AE (1998) Vertebrate locomotion—a lamprey perspective. NY Acad Sci 860:1–18

    Article  CAS  Google Scholar 

  • Hammersen F, Staudte H-W, Möhring E (1976) Studies of the fine structure of invertebrate blood vessels. II. The valves of the lateral sinus of the leech Hirudo medicinalis L. Cell Tissue Res 172:405–423

    Article  PubMed  CAS  Google Scholar 

  • Harik TM, Attaman J, Crowley A, Jellies J (1999) Developmentally regulated target-associated cues influence axon sprouting and outgrowth and may contribute to target specificity. Dev Biol 212:351–365

    Article  PubMed  CAS  Google Scholar 

  • Heitler WJ (1986) Aspects of sensory integration in the crayfish swimmeret system. J Exp Biol 120:387–402

    Google Scholar 

  • Hildebrandt JP (1988) Circulation in the leech, Hirudo medicinalis L. J Exp Biol 134:235–246

    Google Scholar 

  • Hughes GM, Wiersma CAG (1960) The co-ordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). J Exp Biol 37:656–672

    Google Scholar 

  • Ikeda K, Wiersma CAG (1964) Autogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements. Comp Biochem Physiol 12:107–115

    Article  PubMed  CAS  Google Scholar 

  • Jellies JA (1995) Cellular interactions in the development of Annelid neuromuscular systems. Am Zool 35:529–541

    Google Scholar 

  • Jellies J, Kopp DM (1995) Sprouting and connectivity of embryonic leech heart excitor (HE) motor neurons in the absence of their peripheral target. Invert Neurosci 1:145–157

    Article  PubMed  CAS  Google Scholar 

  • Jellies J, Kopp DM, Bledsoe JW (1992) Development of segment- and target-related neuronal identity in the medicinal leech. J Exp Biol 170:71–92

    PubMed  CAS  Google Scholar 

  • Jellies J, Kopp DM, Johansen K, Johansen J (1996) Initial formation and secondary condensation of nerve pathways in the medicinal leech. J Comp Neurol 373:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kiehn O, Butt SJB (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361

    Article  PubMed  CAS  Google Scholar 

  • Krahl B, Zerbst-Boroffka I (1983) Blood pressure in the leech Hirudo medicinalis. J Exp Biol 107:163–168

    Google Scholar 

  • Kristan WB, Calabrese RL (1976) Rhythmic swimming activity in neurons of the isolated nerve cord of the leech. J Exp Biol 65:643–668

    PubMed  Google Scholar 

  • Kueh D, Jellies JA (2012) Targeting of a neuropeptide to discrete regions of the motor arborizations of a single neuron. J Exp Biol (in press)

  • Kuhlman JR, Li C, Calabrese RL (1985a) FMRF-amide-like substances in the leech. I. Immunocytochemical localization. J Neurosci 5:2301–2309

    PubMed  CAS  Google Scholar 

  • Kuhlman JR, Li C, Calabrese RL (1985b) FMRF-amide-like substances in the leech. II. Bioactivity on the heartbeat system. J Neurosci 5:2310–2317

    PubMed  CAS  Google Scholar 

  • Li C, Calabrese RL (1987) FMRF-amide-like substances in the leech. III. Biochemical characterization and physiological effects. J Neurosci 7:595–603

    PubMed  CAS  Google Scholar 

  • Lund JP (2011) Chew before you swallow. In: Gossard JP, Dubuc R, Kolta A (eds) Progress in brain research. Breathe, walk and chew the neural challenge: Part II. Elsevier, Amsterdam, pp 219–251

    Chapter  Google Scholar 

  • Maranto AR, Calabrese RL (1984a) Neural control of the hearts in the leech Hirudo medicinalis. I. Anatomy, electrical coupling, and innervation of the hearts. J Comp Physiol A 154:367–380

    Article  Google Scholar 

  • Maranto AR, Calabrese RL (1984b) Neural control of the hearts in the leech, Hirudo medicinalis. II. Myogenic activity and its control by heart motor neurons. J Comp Physiol A 154:381–391

    Article  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Marzullo TC, Gage GJ (2012) The SpikerBox: a low cost, open-source bioamplifier for increasing public participation in neuroscience inquiry. PLoS ONE 7:e30837

    Article  PubMed  CAS  Google Scholar 

  • Morgan PT, Perrins R, Lloyd PE, Weiss KR (2000) Intrinsic and extrinsic modulation of a single central pattern generating circuit. J Neurophysiol 84:1186–1193

    PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (eds) (1981) Neurobiology of the leech. Cold Spring Harbor, NY

    Google Scholar 

  • Norris BJ, Weaver AL, Morris LG, Wenning A, Garcia PA, Calabrese RL (2006) A central pattern generator producing alternative outputs: temporal pattern of premotor activity. J Neurophysiol 96:309–326

    Article  PubMed  Google Scholar 

  • Norris BJ, Weaver AL, Wenning A, Garcia PS, Calabrese RL (2007a) A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons. J Neurophysiol 98:2992–3005

    Article  PubMed  Google Scholar 

  • Norris BJ, Weaver AL, Wenning A, Garcia PS, Calabrese RL (2007b) A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input. J Neurophysiol 98:2983–2991

    Article  PubMed  Google Scholar 

  • Norris BJ, Baquet G, Weaver AL, Morris LG, Wenning A, Garcia PA, Calabrese AL (2009) A central pattern generator producing alternative outputs: Temporal pattern of premotor activity. J Neurophysiol 96:309–326. doi:10.1152/jn.00011.2006

    Article  Google Scholar 

  • Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and variability in the output of a central pattern generator. J Neurosci 31:4663–4674

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Beenhakker MP (2002) A small systems approach to motor pattern generation. Nature 417:343–350

    Article  PubMed  CAS  Google Scholar 

  • Pickard RS, Mill PJ (1974) Ventilatory movements of the abdomen and branchial apparatus in dragonfly larvae (Odonata: Anisoptera). J Zool 174:23–40

    Article  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577(2):617–639

    Article  PubMed  CAS  Google Scholar 

  • Saideman SR, Blitz DM, Nusbaum MP (2007) Convergent motor patterns from divergent circuits. J Neurosci 27:6664–6674

    Article  PubMed  CAS  Google Scholar 

  • Siddall ME, Tronrelj P, Utevsky SY, Nkamany M, Macdonald KS III (2007) Diverse molecular data demonstrate that commercially available medicinal leeches are not all Hirudo medicinalis. Proc Roy Soc B. doi:10.1098/rspb.2007.0248

  • Smarandache C, Hall WM, Mulloney B (2009) Coordination of rhythmic activity by gradients of synaptic strength in a neural circuit that couples modular neural oscillators. J Neurosci 29:9351–9360

    Article  PubMed  CAS  Google Scholar 

  • Stein PSG, Grillner S, Selverston AI, Stuart DG (1997) Neurons, networks, and behavior. MIT Press, Cambridge

    Google Scholar 

  • Stent GS, Kristan WB, Friesen WO, Ort CA, Poon M, Calabrese RL (1978) Neuronal generation of the leech swimming movement. Science 200:1348–1357

    Article  PubMed  CAS  Google Scholar 

  • Thirumalai V, Marder E (2002) Colocalized neuropeptides activate a central pattern generator by acting on different circuit targets. J Neurosci 22:1874–1882

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Stent GS (1976a) Neuronal control of heartbeat in the medicinal leech. I. Generation of the vascular constriction rhythm by heart motor neurons. J Comp Physiol 111:261–279

    Article  Google Scholar 

  • Thompson WJ, Stent GS (1976b) Neuronal control of heartbeat in the medicinal leech. II. Intersegmental coordination of heart motor neuron activity by heart interneurons. J Comp Physiol 111:281–307

    Article  Google Scholar 

  • Thompson WJ, Stent GS (1976c) Neuronal control of heartbeat in the medicinal leech. III. Synaptic relations of the heart interneurons. J Comp Physiol 111:309–333

    Article  Google Scholar 

  • Wagenaar DA, Hamilton MS, Huang T, Kristan WB, French KA (2010) A hormone-activated central pattern generator for courtship. Curr Biol 20:487–495

    Article  PubMed  CAS  Google Scholar 

  • Weeks JC (1981) Neuronal basis of leech swimming: separation of swim initiation, pattern generation, and intersegmental coordination by selective lesion. J Neurophysiol 45:698–723

    PubMed  CAS  Google Scholar 

  • Wenning A, Meyer EP (2007) Hemodynamics in the leech: blood flow in two hearts switching between two constriction patterns. J Exp Biol 210:2627–2636

    Article  PubMed  Google Scholar 

  • Wenning A, Cymbalyuk GS, Calabrese RL (2004a) Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. J Neurophysiol 91:382–396

    Article  PubMed  Google Scholar 

  • Wenning A, Hill AAV, Calabrese RL (2004b) Heartbeat control in leeches. II. Fictive motor pattern. J Neurophysiol 91:397–409

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a Faculty Research and Creative Activities Award from Western Michigan University (J.J.) and a National Science Foundation REU award # DBI-1062883. We gratefully acknowledge the assistance of Michelle Alfert in helping gather and analyze preliminary data in intact animals and Wesley J. Thompson for his thoughtful insights on the data reported in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Jellies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jellies, J., Kueh, D. Centrally patterned rhythmic activity integrated by a peripheral circuit linking multiple oscillators. J Comp Physiol A 198, 567–582 (2012). https://doi.org/10.1007/s00359-012-0730-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0730-5

Keywords

Navigation