Skip to main content
Log in

Jumping kinematics in the wandering spider Cupiennius salei

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Spiders use hemolymph pressure to extend their legs. This mechanism should be challenged when required to rapidly generate forces during jumping, particularly in large spiders. However, effective use of leg muscles could facilitate rapid jumping. To quantify the contributions of different legs and leg joints, we investigated jumping kinematics by high-speed video recording. We observed two different types of jumps following a disturbance: prepared and unprepared jumps. In unprepared jumps, the animals could jump in any direction away from the disturbance. The remarkable directional flexibility was achieved by flexing the legs on the leading side and extending them on the trailing side. This behaviour is only possible for approximately radial-symmetric leg postures, where each leg can fulfil similar functions. In prepared jumps, the spiders showed characteristic leg positioning and the jumps were directed anteriorly. Immediately after a preliminary countermovement in which the centre of mass was moved backwards and downwards, the jump was executed by extending first the fourth and then the second leg pair. This sequence provided effective acceleration to the centre of mass. At least in the fourth legs, the hydraulic and the muscular mechanism seem to interact to generate ground reaction forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 205:379–389

    PubMed  CAS  Google Scholar 

  • Alexander RM (1977) Mechanics and scaling of terrestrial locomotion. In: Pedley T (ed) Scale effects in animal locomotion. Academic Press, London, pp 93–110

    Google Scholar 

  • Alexander RM (1995) Leg design and jumping technique for humans, other vertebrates and insects. Philos Trans R Soc Lond B Biol Sci 347:235–248

    Article  PubMed  CAS  Google Scholar 

  • Barth FG (2002) A spider’s world. Senses and behavior. Springer, Berlin

    Google Scholar 

  • Barth F, Seyfarth EA (1979) Cupiennius salei Keys. (Araneae) in the highlands of Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Blickhan R (1986) Stiffness of an arthropod leg joint. J Biomech 19(5):375–384

    Article  PubMed  CAS  Google Scholar 

  • Blickhan R (1992) Bionische Perspektiven der aquatischen und terrestrischen Lokomotion. In: Nachtigall W (ed) Technische Biologie und Bionik 1. Biona report, Fischer, pp 135–154

    Google Scholar 

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Article  Google Scholar 

  • Bohmann L, Blickhan R (1998) Der hydraulische Mechanismus des Spinnenbeines und seine Anwendung für technische Probleme. Z angew Math Mech 78(2):87–96

    Article  Google Scholar 

  • Brittinger W (1998) Trichobothrien, Medienströmungen und das Orientierungsverhalten von Jagdspinnen (Cupiennius salei Keys). PhD thesis, University of Vienna

  • Brüssel A (1987) Belastungen und Dehnungen im Spinnenskelett unter natürlichen Verhaltensbedingungen. PhD thesis, J.W.Goethe-University, Frankfurt am Main

  • Burrows M (2007) Anatomy of the hind legs and actions of their muscles during jumping in leafhopper insects. J Exp Biol 210:3590–3600

    Article  PubMed  Google Scholar 

  • Cham JG, Bailey SA, Clark JE, Full RJ, Cutkosky MR (2002) Fast and robust: hexapedal robots via shape deposition manufacturing. Int J Robot Res 21(10–11):869–882

    Article  Google Scholar 

  • Daltorio K, Wei T, Horchler A, Southard L, Wile G, Quinn R, Gorb S, Ritzmann R (2009) Mini-whegs climbs steep surfaces using insect-inspired attachment mechanisms. Int J Robot Res 28:285–302

    Article  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    Article  PubMed  CAS  Google Scholar 

  • Edman KA, Elzinga G, Noble MI (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol 281:139–155

    PubMed  CAS  Google Scholar 

  • Ehlers M (1939) Untersuchungen über Formen aktiver Lokomotion bei Spinnen. Zool Jb Syst 72:373–499

    Google Scholar 

  • Ferdinand W (1981) Die Lokomotion der Krabbenspinnen (Araneae, Thomisidae) und das Wilsonsche Modell der metachronen Koordination. Zool Jb Physiol 85:46–65

    Google Scholar 

  • Full R (1993) Integration of individual leg dynamics with whole body movement in arthropod locomotion. In: Beer R, Ritzmann RE, McKenna T (eds) Biological neural networks in invertebrate neuroethnology and nobots. Academic Press, Boston, pp 3–20

    Google Scholar 

  • Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369–390

    PubMed  CAS  Google Scholar 

  • Gaubert M (1892) Sur I’autotomie chez les araignées. Bull Soc Philom (Paris) 4:78

    Google Scholar 

  • Gronenberg W (1996) Fast actions in small animals: springs and click mechanisms. J Comp Physiol A 178:727–734

    Article  Google Scholar 

  • Günther M, Keppler V, Seyfarth A, Blickhan R (2004) Human leg design: optimal axial alignment under constraints. J Math Biol 48(6):623–646

    Article  PubMed  Google Scholar 

  • Haake S (1998) The engineering of sport. Blackwell, Oxford

    Google Scholar 

  • Harris D, Mill P (1977) Observations on the leg receptors of Ciniflo (Araneida: Dictynidae). J Comp Physiol A 119:37–54

    Article  Google Scholar 

  • Isbister GK, Hirst D (2002) Injuries from spider spines, not spider bites. Vet Hum Toxicol 44(6):339–342

    PubMed  Google Scholar 

  • James RS, Navas CA, Herrel A (2007) How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 210:923–933

    Article  PubMed  Google Scholar 

  • Karner M (1999) Volumenverschiebungen beim Sprung der Jagdspinne Cupiennius salei (Keyserling, 1877). PhD thesis, J.W.Goethe-University, Frankfurt am Main

  • Ker RF (1977) Some structural and mechanical properties of locust and beetle cuticle. PhD thesis, University of Oxford

  • Land MF (1972) Stepping movements made by jumping spiders during turns mediated by the lateral eyes. J Exp Biol 57:15–40

    PubMed  CAS  Google Scholar 

  • Melchers M (1967) Der Beutefang von Cupiennius salei Keyserling (Ctenidae). Z Morph Ökol Tiere 58:321–346

    Article  Google Scholar 

  • Menon C, Lira C (2006) Active articulation for future space applications inspired by the hydraulic system of spiders. Bioinspir Biomim 1:52–61

    Article  PubMed  CAS  Google Scholar 

  • Palmgren P (1978) On the muscular anatomy of spiders. Acta Zool Fen 155:1–41

    Google Scholar 

  • Parry DA, Brown HJ (1959a) The jumping mechanism of salticid spiders. J Exp Biol 36:654–664

    Google Scholar 

  • Parry DA, Brown HJ (1959b) The hydraulic mechanism of the spider leg. J Exp Biol 36:423–433

    Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptions for pray capture in wolf spiders (Aranae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Schneider P, Stannek P (1990) Beinkoordination und Hinderniserkennung bei Vogelspinnen (Theraphosidae). Zool Jb Physiol 94:387–406

    Google Scholar 

  • Schwörer M, Kohl M, Menz W (1998) Fluidic microjoints based on spider legs, 6th int. 6th international conference on new actuators, Bremen, pp 103–106

    Google Scholar 

  • Sens J (1996) Funktionelle Anatomie und Biomechanik der Laufbeine einer Vogelspinne. PhD thesis, Universität des Saarlandes, Saarbrücken

  • Sensenig AT, Shultz JW (2003) Mechanics of cuticular elastic energy storage in leg joints lacking extensor muscles in arachnids. J Exp Biol 206:771–784

    Article  PubMed  Google Scholar 

  • Shultz J (1987) Walking and surface film locomotion in terrestrial and semiaquatic spiders. J Exp Biol 128:427–444

    Google Scholar 

  • Siebert T, Weihmann T, Rode C, Blickhan R (2009) Cupiennius salei: biomechanical properties of the tibia–metatarsus joint and its flexing muscles. J Comp Physiol B 180(2):199–209

    Article  PubMed  Google Scholar 

  • Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ (2007) Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain. Bioinspir Biomim 2:9–18

    Article  PubMed  CAS  Google Scholar 

  • Spenko MJ, Haynes GC, Saunders JA, Cutkosky MR, Rizzi AA, Full RJ, Koditschek DE (2008) Biologically inspired climbing with a hexapedal robot. J Field Robot 25(4–5):223–242

    Article  Google Scholar 

  • Ward TM, Humphreys WF (1981) Locomotion in burrowing and vagrant wolf spiders (Lycosidae). J Exp Biol 92:305–321

    Google Scholar 

  • Wasserthal LT (2001) Anpassungen bei Sphingiden zur Vermeidung von Spinnen- und Fledermausattacken. Verh. Westd. Entom. Tag 2000, Düsseldorf, pp 13–30

  • Wasserthal L (2009) Bungee jumping spiders challenge Darwin’s hypothesis of a coevolutionary race between long spurred orchids and long tongued moths. 102 annual meeting of the DZG, Regensburg, p 67

    Google Scholar 

  • Weihmann T, Blickhan R (2006) Legs operate different during steady locomotion and escape in a wandering spider. J Biomech 39(Suppl 1):361

    Article  Google Scholar 

  • Wilson DM (1967) Stepping patterns in tarantula spiders. J Exp Biol 47:133–151

    Google Scholar 

  • Yanoviak SP, Dudley R, Kaspari M (2005) Directed aerial descent in canopy ants. Nature 433:624–626

    Article  PubMed  CAS  Google Scholar 

  • Zentner L, Petkun S, Blickhan R (2000) From the spider leg to a hydraulik device. Technische Mechanik 20:21–29

    Google Scholar 

Download references

Acknowledgments

We would like to thank F.G. Barth (Vienna) and E.A. Seyfarth (Frankfurt am Main) for providing animals for our experiments and M. Günther (Tübingen) for valuable suggestions concerning torque generation in the spider legs. The work was supported by the Deutsche Forschungsgemeinschaft (PE 693/1-1, Bl 236/9-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Weihmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weihmann, T., Karner, M., Full, R.J. et al. Jumping kinematics in the wandering spider Cupiennius salei . J Comp Physiol A 196, 421–438 (2010). https://doi.org/10.1007/s00359-010-0527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0527-3

Keywords

Navigation