Skip to main content

Advertisement

Log in

Interaction of liquid epicuticular hydrocarbons and tarsal adhesive secretion in Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Species of various insect orders possess specialised tarsal adhesive structures covered by a thin liquid film, which is deposited in the form of footprints. This adhesive liquid has been suggested to be chemically and physiologically related to the epicuticular lipid layer, which naturally covers the body of insects and acts as the prime barrier to environmental stresses, such as desiccation. The functional efficiency of the layer, however, is jeopardised by partial melting that may occur at physiological temperatures. In this study, light microscopic images of elytral prints show that the epicuticular lipid layer of the Colorado potato beetle Leptinotarsa decemlineata actually is partially liquid and chemical investigations reveal the high similarity of the epicuticular hydrocarbon pattern and the tarsal liquid. By means of chemical manipulation of the surface hydrocarbon composition of live beetles, the substance exchange between their tarsal adhesive hairs and the body surface is monitored. Histological sections of L. decemlineata tarsi, furthermore, reveal glandular cells connected to individual adhesive setae and departing from these results, an idea of a general mechanism of tarsal secretion is developed and discussed in a functional–ecological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GC–FID:

Gas chromatography with flame ionisation detection

GC–MS:

Coupled gas chromatography–mass spectrometry

i :

Methyl branch in hydrocarbons at a position > 8

IRM:

Interference reflection microscopy

SEM:

Scanning electron microscopy

SPME:

Solid-phase microextraction

T m :

Melting point

References

  • Akino T, Terayama M, Wakamura A, Yamaoka R (2002) Intraspecific variation of cuticular hydrocarbon composition in Formica japonica Motschoulsky (Hymenoptera: Formicidae). Zool Sci 19:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T (2000) Defense by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zoology 103:1–6

    Google Scholar 

  • Bauchhenß E (1979) Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphology 93:99–123

    Article  Google Scholar 

  • Beament JWL (1945) The cuticular lipoids of insects. J Exp Biol 21:115–131

    Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morph 255:24–43

    Article  PubMed  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthopod Struct Dev 33:3–30

    Article  Google Scholar 

  • Betz O, Mumm R (2001) The predatory legs of Philonthus marginatus (Coleoptera, Staphylinidae): functional morphology and tarsal ultrastructure. Arthopod Struct Dev 30:77–97

    Article  CAS  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst 39:177–207

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phylogeny 64:3–25

    Google Scholar 

  • Bullock JMR, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865

    Article  CAS  Google Scholar 

  • Cassier P, Lensky Y (1995) Ultrastructure of the wax gland complex and secretion of beeswax in the worker honey bee Apis mellifera L. Apidologie 26:17–26

    Article  Google Scholar 

  • Dani FR, Jones GR, Destri S, Spencer SH, Turillazzi S (2001) Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim Behav 62:165–171

    Article  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Dubis E, Malinski E, Dubis A, Szafranek J, Nawrot J, Poplawski J, Wróbel JT (1987) Sex-dependent composition of cuticular hydrocarbons of the Colorado beetle Leptinotarsa decemlineata Say. Comp Biochem Physiol A 87:839–843

    Article  Google Scholar 

  • Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32:907–915

    Article  PubMed  CAS  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2006) Chemical mimicry of cuticular hydrocarbons–how does Eremostibes opacus gain access to breeding burrows of its host Parastizopus armaticeps (Coleoptera, Tenebrionidae)? Chemoecology 16:59–68

    Article  CAS  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of Solid-phase microextraction and solvent extraction techniques. Chemoecology 19:185–193

    Article  CAS  Google Scholar 

  • Geiselhardt SF, Federle W, Prüm B, Geiselhardt S, Lamm S, Peschke K (2010) Impact of chemical manipulation of tarsal liquids on attachment in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol 56:398–404

    Article  PubMed  CAS  Google Scholar 

  • Gibbs A (1995) Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions. Comp Biochem Physiol B 112:667–672

    Article  Google Scholar 

  • Gibbs A (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Insect Physiol 48:391–400

    Article  PubMed  CAS  Google Scholar 

  • Gibbs A, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comp Biochem Physiol B 112:243–249

    Article  Google Scholar 

  • Gorb SN (1997) Porous channels in the cuticle of the head-arrester system in dragon/damselflies (Insecta: Odonata). Microsc Res Tech 37:583–591

    Article  PubMed  CAS  Google Scholar 

  • Gorb SN (1998a) Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): design of co-opted fields of microtrichia and cuticle ultrastructure. Int J Insect Morphol Embryol 27:205–225

    Article  Google Scholar 

  • Gorb SN (1998b) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc R Soc Lond B 265:747–752

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gu X, Quilici D, Juarez P, Blomquist GJ, Schal C (1994) Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of the German Cockroach (Blattella germanica). J Insect Physiol 41:257–267

    Article  Google Scholar 

  • Hasenfuss I (1977) Die Herkunft der Adhäsionsflüssigkeit bei Insekten. Zoomorphology 87:51–64

    Article  Google Scholar 

  • Haverty MI, Grace JK, Nelson LJ, Yamamoto RT (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813–1834

    Article  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (1982) Chemical ecology and insect biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    Article  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  PubMed  CAS  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22:222–228

    Google Scholar 

  • Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47–53

    CAS  Google Scholar 

  • Lewis CT (1962) Diffusion of oil films over insects. Nature 193:904

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1961) Pore canals and related structures in insect cuticle. J Biophys Biochem Cytol 10:589–618

    Article  PubMed  CAS  Google Scholar 

  • Lockey KH (1980) Insect cuticular hydrocarbons. Comp Biochem Physiol B 65:457–462

    Article  Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol B 81:263–273

    Article  Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  PubMed  CAS  Google Scholar 

  • Malinski E, Kusmierz J, Szafranek J, Dubis E, Poplawski J, Wróbel JT, König WA (1986) Cuticular hydrocarbons of the Colorado beetle Leptinotarsa decemlineata Say. Z Naturforsch 41b:567–574

    CAS  Google Scholar 

  • Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from eggs of the tobacco hornworm. Biochemistry 9:4601–4611

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Sukkestad DR, Zaylskie RG (1972) Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. J Lipid Res 13:413–421

    PubMed  CAS  Google Scholar 

  • Nelson D, Fatland C, Adams T (2002) Methyl-branched alkanes on the surface of male and female adults, and eggs of the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Sci 2:17

    Google Scholar 

  • Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B 134:447–466

    Article  PubMed  CAS  Google Scholar 

  • Noble-Nesbitt J (1991) Cuticular permeability and its control. In: Binnington K, Retnakaran A (eds) The Physiology of the Insect Epidermis. CSIRO Publications, East Melbourne

    Google Scholar 

  • Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80

    Article  Google Scholar 

  • Noirot C, Quennedey A (1991) Glands, gland cells, glandular units: some comments on terminology and classification. Ann Soc Entomol 27:123–128

    Google Scholar 

  • Peschke K (1987) Cuticular hydrocarbons regulate mate recognition, male aggression, and female choice of the rove beetle, Aleochara curtula. J Chem Ecol 13:1993–2008

    Article  CAS  Google Scholar 

  • Pomonis JG (1989) Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex and irradiation. J Chem Ecol 15:2301–2317

    Article  CAS  Google Scholar 

  • Pomonis JG, Nelson DR, Fatland CL (1980) Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J Chem Ecol 6:965–972

    Article  CAS  Google Scholar 

  • Schal C, Sevala VL, Young HP, Bachmann JAS (1998) Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am Zool 38:382–393

    CAS  Google Scholar 

  • Schreiber L, Kirsch M, Riederer M (1996) Transport properties of cuticular waxes of Fagus sylvatica L. and Picea abies (L.) Karst.: estimation of size selectivity and tortuosity from diffusion coefficients of aliphatic molecules. Planta 198:104–109

    Article  CAS  Google Scholar 

  • Stork NE (1980) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linn Soc 68:173–306

    Article  Google Scholar 

  • Szafranek J, Malinski E, Dubis E, Hebanowska E, Nawrot J, Oksman P, Pihlaja K (1994) Identification of branched alkanes in lipids of Leptinotarsa decemlineata Say and Tribolium destructor by GC–MS: a comparison of main-beam and link-scanned spectra. J Chem Ecol 20:2197–2212

    Article  CAS  Google Scholar 

  • Voigt D, Gorb S (2008) An insect trap as habitat: cohesion-failure mechanism prevents adhesion of Pameridea roridulae bugs to the sticky surface of the plant Roridula gorgonias. J Exp Biol 211:2647–2657

    Article  PubMed  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  PubMed  CAS  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    Article  PubMed  Google Scholar 

  • Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool Lond A 205:297–307

    Google Scholar 

  • Wigglesworth VB (1945) Transpiration through the cuticle of insects. J Exp Biol 21:97–114

    Google Scholar 

Download references

Acknowledgments

We are grateful for donation of beetles from Hannelore Baudendistel and from Bernd Hommel, Federal research centre for cultivated plants—Julius-Kühn-Institut Kleinmachnow, Germany (formerly Federal Biological Research Centre for Agriculture and Forests; BBA-IP). Oliver Betz (Universität Tübingen) and Werner Gnatzy (Universität Frankfurt) kindly assisted us with the interpretation of the histological sections. Furthermore, we would like to thank Ruth Lieberth and Tessy Balog-Albonetti for helping with the histological preparations and Wittko Francke (Universität Hamburg) kindly synthesised the alkenes. Moreover, we are indebted to Walter Federle (University of Cambridge) for introducing SFG to the technique of interference reflection microscopy and for provisioning of images which were extremely helpful for understanding the adhesive process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie F. Geiselhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiselhardt, S.F., Lamm, S., Gack, C. et al. Interaction of liquid epicuticular hydrocarbons and tarsal adhesive secretion in Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J Comp Physiol A 196, 369–378 (2010). https://doi.org/10.1007/s00359-010-0522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0522-8

Keywords

Navigation