Skip to main content

Advertisement

Log in

Identification and characterization of a protostome homologue of peropsin from a jumping spider

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Peropsin, a member of the opsin family, has characteristics of two functionally distinct opsin-groups, that is, amino acid residues conserved among opsins for light-sensing and a retinal-photoisomerase-like molecular property. Although such a bilateral feature of peropsin seems to be important for understanding the diversity of the opsin family, previous studies have been limited to higher deuterostome, vertebrate and amphioxus peropsins. Here, we report a protostome peropsin homologue from a jumping spider. We found a spider opsin that shares amino acid homology and conserved amino acid residues with known peropsins. The spider opsin-based pigment heterologously expressed in cultured cells exhibited photoisomerase-like isomerization characteristics and a bistable nature. Based on the characteristics of both the amino acid homology and its photochemical properties, we concluded that the spider opsin is the first protostome peropsin homologue. These results show that peropsin existed before the deuterostome–protostome split like other members of the opsin family. In addition, the spider peropsin was localized to non-visual cells in the retina, and fluorescence from reduced retinal chromophore was also observed in the region where peropsin was localized. These findings provide the first demonstration that the peropsin can form a photosensitive pigment in vivo and underlie non-visual function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HK (2001) A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28:256–260

    Article  CAS  PubMed  Google Scholar 

  • Gärtner W (2000) Invertebrate visual pigments. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics, vol 3. Elsevier Science, Amsterdam, pp 297–388

    Google Scholar 

  • Hao W, Fong HK (1999) The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem 274:6085–6090

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hara R (1967) Rhodopsin and retinochrome in the squid retina. Nature 214:573–575

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hara R (1968) Regeneration of squid retinochrome. Nature 219:450–454

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kojima D, Oura T, Hisatomi O, Tokunaga F, Fukada Y, Yoshizawa T, Shichida Y (1996) Molecular properties of chimerical mutants of gecko blue and bovine rhodopsin. Biochemistry 35:2625–2629

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Ono K, Suga H, Iwabe N, Miyata T (1998) Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway. FEBS Lett 439:66–70

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A, Kubokawa K, Shichida Y (2002) Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett 531:525–528

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, Terakita A (2004) Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci USA 101:6687–6691

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A (2005) Cephalochordate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol 15:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F (2008a) Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol 66:130–137

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008b) Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proc Natl Acad Sci USA 105:15576–15580

    Article  CAS  PubMed  Google Scholar 

  • Ozaki K, Hara R, Hara T (1983) Histochemical localization of retinochrome and rhodopsin studied by fluorescence microscopy. Cell Tissue Res 233:335–345

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1997) Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci USA 94:9893–9898

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Narita K, Yoshihara K, Nagai K, Kito Y (1995) Phosphatidyl-inositol phospholipase-C in squid photoreceptor membrane is activated by stable metarhodopsin via GTP-binding protein, Gq. Vision Res 35:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6:213

    Article  PubMed  Google Scholar 

  • Terakita A, Hara R, Hara T (1989) Retinal-binding protein as a shuttle for retinal in the rhodopsin retinochrome system of the squid visual cells. Vision Res 29:639–652

    Article  CAS  PubMed  Google Scholar 

  • Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y (2004) Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 11:284–289

    Article  CAS  PubMed  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, Shichida Y (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105:883–890

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto H, Terakita A, Shichida Y (2005) A rhodopsin exhibiting binding ability to agonist all-trans-retinal. Proc Natl Acad Sci USA 102:6303–6308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Robert S. Molday (University of British Columbia) for his kind supply of rho 1D4-producing hybridoma. This work was supported in part by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, and Culture (to M.K. and A.T.). T.N. is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Terakita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, T., Koyanagi, M., Tsukamoto, H. et al. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A 196, 51–59 (2010). https://doi.org/10.1007/s00359-009-0493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0493-9

Keywords

Navigation