Skip to main content
Log in

Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-AG:

2-Arachidonyl glycerol

AMPA:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid

AM251:

1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide

ANOVA:

Analysis of variance

AP5:

2-Amino-5-phosphonopentanoic acid

CNS:

Central nervous system

DMSO:

Dimethyl sulfoxide

EPSP:

Excitatory post-synaptic potential

LFS:

Low frequency stimulation

LTD:

Long-term depression

LTP:

Long-term potentiation

mGluR:

Metabotropic glutamate receptor

MK801:

(5R,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine

NMDAR:

N-methyl-d-aspartic acid receptor

References

  • Anwyl R (2006) Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression. Prog Neurobiol 78(1):17–37

    Article  PubMed  CAS  Google Scholar 

  • Baccus SA (1998) Synaptic facilitation by reflected action potentials: enhancement of transmission when nerve impulses reverse direction at axon branch points. Proc Natl Acad Sci USA 95:8345–8350

    Article  PubMed  CAS  Google Scholar 

  • Baccus SA, Burrell BD, Sahley CL, Muller KJ (2000) Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning. J Neurophysiol 83:1693–1700

    PubMed  CAS  Google Scholar 

  • Basavarajappa BS (2007) Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14:237–246

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  PubMed  CAS  Google Scholar 

  • Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26:4166–4177

    Article  PubMed  CAS  Google Scholar 

  • Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24:139–166

    Article  PubMed  CAS  Google Scholar 

  • Breivogel CS, Griffin G, Di Marzo V, Martin BR (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    PubMed  CAS  Google Scholar 

  • Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV (2001) Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci 21:1510–1522

    PubMed  CAS  Google Scholar 

  • Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC (2006) A genomic view of the sea urchin nervous system. Dev Biol 300:434–460

    Article  PubMed  CAS  Google Scholar 

  • Burrell BD, Li Q (2008) Co-induction of long-term potentiation and long-term depression at a central synapse in the leech. Neurobiol Learn Mem 90:275–279

    Article  PubMed  CAS  Google Scholar 

  • Burrell BD, Sahley CL (2004) Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS. J Neurosci 24:4011–4019

    Article  PubMed  CAS  Google Scholar 

  • Burrell BD, Sahley CL, Muller KJ (2003) Progressive recovery of learning during regeneration of a single synapse in the medicinal leech. J Comp Neurol 457(1):67–74

    Article  PubMed  Google Scholar 

  • Cachope R, Mackie K, Triller A, O’Brien J, Pereda AE (2007) Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids. Neuron 56:1034–1047

    Article  PubMed  CAS  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2007) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    Article  Google Scholar 

  • Crisp KM, Muller KJ (2006) A 3-synapse positive feedback loop regulates the excitability of an interneuron critical for sensitization in the leech. J Neurosci 26:3524–3531

    Article  PubMed  CAS  Google Scholar 

  • De Petrocellis L, Melck D, Bisogno T, Milone A, Di Marzo V (1999) Finding of the encocannabinoid signaling system in Hydra, a very primitive organism: possible role in the feeding response. Neurosci 92:377–387

    Article  Google Scholar 

  • Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Martin BR (1999) Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids. Curr Med Chem 6:721–744

    PubMed  Google Scholar 

  • Egertova M, Elphick MR (2007) Localization of CiCBR in the invertebrate chordate Ciona intestinalis: evidence of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. J Comp Neurol 502:660–672

    Article  PubMed  CAS  Google Scholar 

  • Eliot LS, Hawkins RD, Kandel ER, Schacher S (1994) Pairing-specific, activity-dependent presynaptic facilitation at Aplysia sensory-motor neuron synapses in isolated cell culture. J Neurosci 14:368–383

    PubMed  CAS  Google Scholar 

  • Elphick MR (1998) An invertebrate G-protein coupled receptor is a chimeric cannabinoid/melanocortin receptor. Brain Res 780:168–171

    Article  PubMed  Google Scholar 

  • Elphick MR, Egertová M (2001) The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 356:381–408

    Article  PubMed  CAS  Google Scholar 

  • Elphick MR, Egertova M (2005) The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb Exp Pharmacol 168:283–297

    Article  PubMed  CAS  Google Scholar 

  • Elphick MR, Satou Y, Satoh N (2003) The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene 302:95–101

    Article  PubMed  CAS  Google Scholar 

  • Ezzeddine Y, Glanzman DL (2003) Prolonged habituation of the gill-withdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity and postsynaptic glutamate receptors. J Neurosci 23:9585–9594

    PubMed  CAS  Google Scholar 

  • Frank E, Jansen JK, Rinvik E (1975) A multisomatic axon in the central nervous system of the leech. J Comp Neurol 159:1–13

    Article  PubMed  CAS  Google Scholar 

  • Friesen WO (1981) Physiology of water motion detection in the medicinal leech. J Physiol 92:255–275

    Google Scholar 

  • Gavrila LB, Orth PM, Charlton MP (2005) Phosphorylation-dependent low-frequency depression at phasic synapses of a crayfish motoneuron. J Neurosci 25:3168–3180

    Article  Google Scholar 

  • Grey KB, Moss BL, Burrell BD (2009) Molecular identification and expression of the NMDA receptor NR1 subunit in the leech. Invert Neurosci 9:11–20

    Article  PubMed  CAS  Google Scholar 

  • Guo HF, Zhong Y (2006) Requirement of Akt to mediate long-term synaptic depression in Drosophila. J Neurosci 26:4004–4014

    Article  PubMed  CAS  Google Scholar 

  • Ha TJ, Kohn AB, Bobkova YV, Moroz LL (2006) Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: relevance to memory mechanisms. Biol Bull 210:255–270

    Article  PubMed  CAS  Google Scholar 

  • Hajos N, Ledent C, Freund TF (2001) Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus. Neurosci 106:1–4

    Article  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137

    Article  PubMed  CAS  Google Scholar 

  • Heifets BD, Chevaleyre V, Castillo PE (2008) Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin. Proc Natl Acad Sci USA 105:10250–10255

    Article  PubMed  CAS  Google Scholar 

  • Jami SA, Wright WG, Glanzman DL (2007) Differential classical conditioning of the gill-withdrawal reflex in Aplysia recruits both NMDA receptor-dependent enhancement and NMDA receptor-dependent depression of the reflex. J Neurosci 27:3064–3068

    Article  PubMed  CAS  Google Scholar 

  • Kristan WB Jr, Calabrese RL, Friesen WO (2005) Neuronal control of leech behavior. Prog Neurobiol 76:279–327

    Article  PubMed  Google Scholar 

  • Lemak MS, Bravarenko NI, Bobrov MY, Bezuglov VV, Ierusalimsky VN, Storozhuk MV, Malyshev AY, Balaban PM (2007) Cannabinoid regulation in identified synapse of terrestrial snail. Eur J Neurosci 26:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Leung HT, Tseng-Crank J, Kim E, Mahapatra C, Shino S, Zhou Y, An L, Doerge RW, Pak WL (2008) DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors. Neuron 58:884–896

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Burrell BD (2008) CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses. Brain Res 1228:43–57

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ (1994) Long-term synaptic depression in the mammalian brain. Neuron 2:457–472

    Article  Google Scholar 

  • Lynn BD, Rempel JL, Nagy JI (2001) Enrichment of neuronal and glial connexins in the postsynaptic density subcellular fraction of rat brain. Brain Res 898:1–8

    Article  PubMed  CAS  Google Scholar 

  • Macagno ER, Muller KJ, Pitman RM (1987) Conduction block silences parts of a chemical synapse in the central nervous system. J Physiol 387:649–664

    PubMed  CAS  Google Scholar 

  • Mackie K (2006) Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength. Int J Obes (Lond) 30(Suppl 1):S19–S23

    Article  CAS  Google Scholar 

  • Magni F, Pellegrino M (1978) Patterns of activity and the effects of activation of the fast conducting system on the behaviour of unrestrained leeches. J Exp Biol 76:123–135

    PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  • Matias I, Bisogno T, Melck D, Vandenbulcke F, Verger-Bocquet M, De Petrocellis L, Sergheraert C, Breton C, Di Marzo V, Salzet M (2001) Evidence for an endocannabinoid system in the central nervous system of the leech Hirudo medicinalis. Brain Res Mol Brain Res 87:145–159

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM (2004) Phylogenomic and chemotaxonomic analysis of the endocannabinoid system. Brain Res Rev 45(1):18–29

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Di Marzo V, De Petrocellis L, Mercer A, Glass M (2001) Cannabinoid receptors are absent in insects. J Comp Neurol 436:423–429

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Agraval J, Gleeson D, Heasman K, Glass M (2006) Cannabinoid receptors in invertebrates. J Evol Biol 19:366–373

    Article  PubMed  CAS  Google Scholar 

  • Modney BK, Sahley CL, Muller KJ (1997) Regeneration of a central synapse restores nonassociative learning. J Neurosci 17:6478–6482

    PubMed  CAS  Google Scholar 

  • Morishita W, Malenka RC (2008) Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus. J Neurophysiol 99:254–263

    Article  PubMed  CAS  Google Scholar 

  • Muller KJ, Scott SA (1981) Transmission at a ‘direct’ electrical connexion mediated by an interneurone in the leech. J Physiol 311:565–583

    PubMed  CAS  Google Scholar 

  • Oliet SH, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18:969–982

    Article  PubMed  CAS  Google Scholar 

  • Peterson EL (1984) The fast conducting system of the leech: a network of 93 dye-coupled interneurons. J Comp Physiol 154:781–788

    Article  Google Scholar 

  • Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97:7573–7578

    Article  PubMed  CAS  Google Scholar 

  • Rawls SM, Rodriguez T, Baron DA, Raffa RB (2006) A nitric oxide synthase inhibitor (L-NAME) attenuates abstinence-induced withdrawal from both cocaine and a cannabinoid agonist (WIN 55212-2) in Planaria. Brain Res 1099:82–87

    Article  PubMed  CAS  Google Scholar 

  • Rawls SM, Gomez T, Raffa RB (2007) An NMDA antagonist (LY 235959) attenuates abstinence-induced withdrawal of planarians following acute exposure to a cannabinoid agonist (WIN 55212-2). Pharmacol Biochem Behav 86:499–504

    Article  PubMed  CAS  Google Scholar 

  • Sahley CL, Modney BK, Boulis NM, Muller KJ (1994) The S cell: an interneuron essential for sensitization and full dishabituation of leech shortening. J Neurosci 14:6715–6721

    PubMed  CAS  Google Scholar 

  • Salzet M, Stefano GB (2002) The endocannabinoid system in invertebrates. Prostaglandins Leukot Essent Fatty Acids 66:353–361

    Article  PubMed  CAS  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB (2007) Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses. Neuropharmacology 52:176–184

    Article  PubMed  Google Scholar 

  • Smith M, Pereda AE (2003) Chemical synaptic activity modulates nearby electrical synapses. Proc Natl Acad Sci USA 100:4849–4854

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Korn H (1978) Morphological correlates of electrical and other interactions through low-resistance pathways between neurons of the vertebrate central nervous system. Int Rev Cytol 55:67–107

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB, Salzet B, Salzet M (1997) Identification and characterization of the leech CNS cannabinoid receptor: coupling to nitric oxide release. Brain Res 753:219–224

    Article  PubMed  CAS  Google Scholar 

  • Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301

    Article  PubMed  CAS  Google Scholar 

  • Ultsch A, Schuster CM, Laube B, Betz H, Schmitt B (1993) Glutamate receptors of Drosophila melanogaster. Primary structure of a putative NMDA receptor protein expressed in the head of the adult fly. FEBS Lett 324:171–177

    Article  PubMed  CAS  Google Scholar 

  • Weeks JC (1982) Segmental specialization of a leech swim-initiating interneuron, cell 2051. J Neurosci 2:972–985

    PubMed  CAS  Google Scholar 

  • Wiley JL, Barrett RL, Lowe J, Balster RL, Martin BR (1995) Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats. Neuropharmacology 34:669–676

    Article  PubMed  CAS  Google Scholar 

  • Xia S, Miyashita T, Fu TF, Lin WY, Wu CL, Pyzocha L, Lin IR, Saitoe M, Tully T, Chiang AS (2005) NMDA receptors mediate olfactory learning and memory in Drosophila. Curr Biol 15:603–615

    Article  PubMed  CAS  Google Scholar 

  • Zannat MT, Locatelli F, Rybak J, Menzel R, Leboulle G (2006) Identification and localisation of the NR1 sub-unit homologue of the NMDA glutamate receptor in the honeybee brain. Neurosci Lett 398:274–279

    Article  PubMed  CAS  Google Scholar 

  • Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146:9–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Brenda Moss, Kenneth Muller, Kevin Crisp and Maurice Elphick for their helpful comments and suggestions. Supported by grants from the National Science Foundation (IBN-0432683, BDB), the South Dakota Spinal Cord/Traumatic Brain Injury Research Council (BDB) and by a subproject of the National Institutes of Health grant (P20 RR015567, BDB), which is designated as a Center of Biomedical Research Excellence (COBRE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Burrell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

359_2009_462_MOESM1_ESM.eps

Supplementary Figure 1. The different periods of drug perfusion between preparations that received 450s versus 900s low frequency stimulation did not change the effects of AP5 or AM251 on LTD. AP5 bath-application lasting to 900s (which matches the duration of drug treatment during 900s low frequency stimulation) blocked LTD following 450s low frequency stimulation as effectively as synapses that underwent a 450s drug application that coincided with the 450s low frequency stimulation (one-way ANOVA p<0.001; Newman-Keuls’ test: between 450s and 900s AP5 perfusion vs. no drug, p<0.001*). Neither the 450s nor 900s AM251 perfusion were effective at blocking LTD following 450s low frequency stimulation and neither group differed from synapses that underwent 450s low frequency stimulation in saline with DMSO (one-way ANOVA, ns). DMSO attenuated LTD following 450s low frequency stimulation, but significant depression was still observed. Length of AP5 or AM251 treatment did not alter the effects of either drug on LTD of the electrical synaptic component (Data not shown). (EPS 976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Burrell, B.D. Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. J Comp Physiol A 195, 831–841 (2009). https://doi.org/10.1007/s00359-009-0462-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0462-3

Keywords

Navigation