Skip to main content
Log in

Ultraviolet photopigment sensitivity and ocular media transmittance in gulls, with an evolutionary perspective

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Gulls (Laridae excluding Sternidae) appear to be the only shorebirds (Charadriiformes) that have a short wavelength sensitive type 1 (SWS1) cone pigment opsin tuned to ultraviolet (UV) instead of violet. However, the apparent UV-sensitivity has only been inferred indirectly, via the interpretation that the presence of cysteine at the key amino acid position 90 in the SWS1 opsin confers UV sensitivity. Unless the cornea and the lens efficiently transmit UV to the retina, gulls might in effect be similar to violet-sensitive birds in spectral sensitivity even if they have an ultraviolet sensitive (UVS) SWS1 visual pigment. We report that the spectral transmission of the cornea and lens of great black-backed Larus marinus and herring gulls L. argentatus allow UV-sensitivity, having a λT0.5 value, 344 nm, similar to the ocular media of UV sensitive birds. By molecular sequencing of the second α-helical transmembrane region of the SWS1 opsin gene we could also infer that 15 herring gulls and 16 yellow-legged gulls L. michahellis, all base-pair identical, are genetically UV-sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Ripley SD (1987) Compact handbook of the birds of India and Pakistan, 2nd edn. Oxford University Press, Delhi

  • Baker AJ, Pereira SL, Paton TA (2007) Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol Lett 3:205–209

    Article  PubMed  Google Scholar 

  • Beason RC, Loew ER (2008) Visual pigment and oil droplet characteristics of the bobolink (Dolichonyx oryzivorus), a new world migratory bird. Vision Res 46:1–8

    Article  Google Scholar 

  • Bennett ATD, Cuthill IC (1994) Ultraviolet vision in birds: what is its function? Vision Res 34:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Lunau K (1997) Ultraviolet plumage colors predict mate preferences in starlings. Proc Natl Acad Sci 94:8618–8621

    Article  PubMed  CAS  Google Scholar 

  • Boulton M, Rozanowska M, Rozanowski B (2001) Retinal photodamage. J Photochem Photobiol B 64:144–161

    Article  CAS  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Church SC, Bennett ATD, Cuthill IC, Partridge JC (1998) Ultra-violet cues affect the foraging behaviour of blue tits. Proc R Soc Lond B 265:1509–1514

    Article  Google Scholar 

  • Clements JF (2007) The Clements checklist of birds of the world, 6th edn. Cornell University Press, Ithaca

    Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. Adv Stud Behav 29:159–214

    Article  Google Scholar 

  • Emmerton J, Schwemer J, Muth J, Schlecht P (1980) Spectral transmission of the ocular media of the pigeon (Columba livia). Invest Ophthalmol Vis Sci 39:1161–1163

    Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

    Article  PubMed  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1767

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2002) Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol 205:3925–3935

    PubMed  Google Scholar 

  • Hart NS (2004) Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics. J Exp Biol 207:1229–1240

    Article  PubMed  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1998) Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433–1446

    PubMed  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (1999) Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo). Vision Res 39:3321–3328

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Partridge JC, Bennett ATD, Cuthill IC (2000a) Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. J Comp Physiol A 186:681–694

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC, Bennett AT (2000b) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol A 186:375–387

    Article  PubMed  CAS  Google Scholar 

  • Håstad O, Ernstdotter E, Ödeen A (2005) Ultraviolet vision and foraging in dip and plunge diving birds. Biol Lett 1:306–309

    Article  PubMed  Google Scholar 

  • Hunt RWG (1991) Measuring colour, 2nd edn. Ellis Horwood, New York

    Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Wilkie SE, Parry JW, Davies WL, Poopalasundaram S, Bowmaker JK (2004) Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci 3:713–720

    Article  PubMed  CAS  Google Scholar 

  • Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, Bowmaker JK (2007) Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochem Photobiol 83:303–310

    PubMed  CAS  Google Scholar 

  • Jane SD, Bowmaker JK (1988) Tetrachromatic colour vision in the duck (Anas platyrhynchos L.): microspectrophotometry of visual pigments and oil droplets. J Comp Physiol A 162:225–235

    Article  CAS  Google Scholar 

  • Knowles A, Dartnall HJA (1977) The photobiology of vision. In: Davson H (ed) The eye, vol 2B. Academic Press, London

    Google Scholar 

  • Maier EJ (1994) Ultraviolet vision in a passeriform bird: from receptor spectral sensitivity to overall spectral sensitivity in Leothrix lutea. Vision Res 34:1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Mosk V, Thomas N, Hart NS, Partridge JC, Beazley LD, Shand J (2007) Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus. Vis Neurosci 24:345–354

    Article  PubMed  Google Scholar 

  • Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–861

    Article  PubMed  Google Scholar 

  • Ödeen A, Hart NS, Håstad O (2009) Assessing the use of genomic DNA as a predictor of the maximum absorbance wavelength of avian SWS1 opsin visual pigments. J Comp Physiol A 195:167–173

    Article  Google Scholar 

  • Pons JM, Hassanin A, Crochet P-A (2005) Phylogenetic relationships within the Laridae (Charadriiformes: Aves) inferred from mitochondrial markers. Mol Phyl Evol 37:686–699

    Article  CAS  Google Scholar 

  • Shi Y, Yokoyama S (2003) Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci USA 100:8308–8313

    Article  PubMed  CAS  Google Scholar 

  • Svensson L, Grant PJ, Mullarney K, Zetterström D (2001) Collins bird guide: the most complete guide to the birds of Britain and Europe. Harper Collins Publishers, London

    Google Scholar 

  • Thomas GH, Wills MA, Székely T (2004) A supertree approach to shorebird phylogeny. BMC Evol Biol 4:28

    Article  PubMed  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc Roy Soc B 265:351–358

    Article  CAS  Google Scholar 

  • Wilkie SE, Vissers PM, Das D, DeGrip WJ, Bowmaker JK, Hunt DM (1998) The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochem J 330:541–547

    PubMed  CAS  Google Scholar 

  • Wilkie SE, Robinson PR, Cronin TW, Poopalasundaram S, Bowmaker JK, Hunt DM (2000) Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry 39:7895–7901

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (2002) Molecular evolution of color vision in vertebrates. Gene 300:69–78

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Blow NS (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc Natl Acad Sci USA 97:7366–7371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Martina Andersson and Lasse Johansson at Uppsala City Council for the great black-backed and herring gull samples, and Benedicto González and Miguel González-Vélez at LOCUS AVIS SL Company as well as Marta Vila Taboada for the yellow-legged gull samples. This study was financially supported by The Swedish Research Council, VR (OH), The Swedish Research Council Formas (AÖ) and Stiftelsen för Zoologisk Forskning (sequencing). This study complies with the “Principles of animal care", publication No. 86–23, revised 1985 of the National Institute of Health, and also with current Swedish law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olle Håstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håstad, O., Partridge, J.C. & Ödeen, A. Ultraviolet photopigment sensitivity and ocular media transmittance in gulls, with an evolutionary perspective. J Comp Physiol A 195, 585–590 (2009). https://doi.org/10.1007/s00359-009-0433-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-009-0433-8

Keywords

Navigation