Skip to main content
Log in

Circadian stress tolerance in adult Caenorhabditis elegans

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Circadian rhythms control several behaviors through neural networks, hormones and gene expression. One of these outputs in invertebrates, vertebrates and plants is the stress resistance behavior. In this work, we studied the circadian variation in abiotic stress resistance of adult C. elegans as well as the genetic mechanisms that underlie such behavior. Measuring the stress resistance by tap response behavior we found a rhythm in response to osmotic (NaCl LC50 = 340 mM) and oxidative (H2O2 LC50 = 50 mM) shocks, with a minimum at ZT0 (i.e., lights off) and ZT12 (lights on), respectively. In addition, the expression of glutathione peroxidase (C11E4.1) and glycerol-3-phosphate dehydrogenase (gpdh-1) (genes related to the control of stress responses) also showed a circadian fluctuation in basal levels with a peak at night. Moreover, in the mutant osr-1 (AM1 strain), a negative regulator of the gpdh-1 pathway, the osmotic resistance rhythms were masked at 350 mM but reappeared when the strain was treated with a higher NaCl concentration. This work demonstrates for the first time that in the adult nematode, C. elegans stress responses vary daily, and provides evidence of an underlying rhythmic gene expression that governs these behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CGC:

Caenorhabditis Genetics Center

CT:

Circadian time

DAF:

Abnormal Dauer formation

DD:

Dark–dark (constant darkness)

FuDR:

Fluorodeoxyuridine

GPDH:

Glycerol-3-phosphate dehydrogenase

GPX:

Glutathione peroxidase

HSP:

Heat shock protein

LC50 :

Lethal concentration 50

LD:

Light–dark

MSRA:

Methionine sulfoxide-S-reductase

NGM:

Nematode growth medium

OSR:

Osmotic stress-resistant

ZT:

Zeitgeber time

References

  • Anokhin PK (1974) Biological roots of the conditioned reflex and its role in adaptive behavior. Pergamon Press, Oxford

    Google Scholar 

  • Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190:191–202

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Burr AH (1985) The photomovement of Caenorhabditis elegans, a nematode which lacks ocelli Proof that the response is to light not radiant heating. Photochem Photobiol 41:577–582

    Article  PubMed  CAS  Google Scholar 

  • Ceriani MF, Hogenesch JB, Yanovsky M, Panda S, Straume M, Kay SA (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22:9305–9319

    PubMed  CAS  Google Scholar 

  • Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370

    Article  PubMed  CAS  Google Scholar 

  • Choe KP, Strange K (2007) Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans. FEBS J 274:5782–5789

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Engelmann W (1988) Evolution and selective advantage of circadian rhythms. Acta Physiol Pol 39:345–356

    PubMed  CAS  Google Scholar 

  • Fabian TJ, Johnson TE (1994) Production of age-synchronous mass cultures of Caenorhabditis elegans. J Gerontol 49:B145–B156

    PubMed  CAS  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Hardaker LA, Singer E, Kerr R, Zhou G, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R, Coto-Montes A, Poeggeler B (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20:921–962

    Article  PubMed  CAS  Google Scholar 

  • Hart AC (2006) Behavior. In: WormBook (ed) The C. elegans research community. WormBook. http://www.wormbook.org

  • Heschl MF, Baillie DL (1990) The HSP70 multigene family of Caenorhabditis elegans. Comp Biochem Physiol B 96:633–637

    Article  PubMed  CAS  Google Scholar 

  • Hong M, Kwon JY, Shim J, Lee J (2004) Differential hypoxia response of hsp-16 genes in the nematode. J Mol Biol 344:369–381

    Article  PubMed  CAS  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  PubMed  CAS  Google Scholar 

  • Karsai A, Müller S, Platz S, Hauser MT (2002) Evaluation of a homemade SYBR green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 32:790–792, 794–796

    Google Scholar 

  • Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. In: WormBook (ed) The C. elegans research community. WormBook. http://www.wormbook.org

  • Kippert F, Saunders DS, Blaxter ML (2002) Caenorhabditis elegans has a circadian clock. Curr Biol 12:R47–R49

    Article  PubMed  CAS  Google Scholar 

  • Kohsaka A, Bass J (2007) A sense of time: how molecular clocks organize metabolism. Trends Endocrinol Metab 18:4–11

    Article  PubMed  CAS  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  PubMed  CAS  Google Scholar 

  • Lamitina T, Huang CG, Strange K (2006) Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci USA 103:12173–12178

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647

    Article  PubMed  CAS  Google Scholar 

  • Lewis AL, Fleming JT (1995) Basic culture methods. In: Epstein HF, Shakes DC (eds) Methods in cell biology, vol 48: Caenorhabditis elegans: modern biological analysis of an organism. Academic Press, San Diego, pp 12–14

    Google Scholar 

  • Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY (2006) Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 4:429–440

    Article  PubMed  CAS  Google Scholar 

  • Link CD, Cypser JR, Johnson CJ, Johnson TE (1999) Direct observation of stress response in Caenorhabditis elegans using a reporter transgene. Cell Stress Chaperones 4:235–242

    Article  PubMed  CAS  Google Scholar 

  • Marques MD, Golombek D, Moreno C (1997) Adaptaçao temporal. In: Marques N, Menna-Barreto L (eds) Cronobiologia: Princípios e aplicações. Editora da Universidade de São Paulo, São Paulo, pp 45–84

    Google Scholar 

  • Mitchell DH, Stiles JW, Santelli J, Sanadi DR (1979) Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol 34:28–36

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54

    Article  PubMed  CAS  Google Scholar 

  • Rensing L, Monnerjahn C (1996) Heat shock proteins and circadian rhythms. Chronobiol Int 13:239–250

    Article  PubMed  CAS  Google Scholar 

  • Saigusa T, Ishizaki S, Watabiki S, Ishii N, Tanakadate A, Tamai Y, Hasegawa K (2002) Circadian behavioural rhythm in Caenorhabditis elegans. Curr Biol 12:R46–R47

    Article  PubMed  CAS  Google Scholar 

  • Simonetta SH, Golombek DA (2007) An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. J Neurosci Methods 161:273–280

    Article  PubMed  Google Scholar 

  • Solomon A, Bandhakavi S, Jabbar S, Shah R, Beitel GJ, Morimoto RI (2004) Caenorhabditis elegans OSR–1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167:161–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Science Agency and the National University of Quilmes (Argentina). SHS is a fellow of the National Scientific and Technical Investigations Council (CONICET), and AR had fellowships from the Pharmaceutical and Chemical Industry Studies Center (CEDIQUIFA) and the Scientific Investigations Commission (CIC). Studies in Chile were supported by the National Science and Technology Research Council of Chile (CONICYT). The strains used in this work were provided by the CGC center, which is supported by the NIH, and the C. elegans knockout consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego A. Golombek.

Additional information

S.H. Simonetta and A. Romanowski contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonetta, S.H., Romanowski, A., Minniti, A.N. et al. Circadian stress tolerance in adult Caenorhabditis elegans . J Comp Physiol A 194, 821–828 (2008). https://doi.org/10.1007/s00359-008-0353-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0353-z

Keywords

Navigation