Skip to main content
Log in

Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The wave-type African weakly electric fish Gymnarchus niloticus produces electric organ discharges (EODs) from an electric organ in the tail that is driven by a pacemaker complex in the medulla, which consists of a pacemaker nucleus, two lateral relay nuclei and a medial relay nucleus. The prepacemaker nucleus (PPn) in the area of the dorsal posterior nucleus of the thalamus projects exclusively to the pacemaker nucleus and is responsible for EOD interruption behavior. The goal of the present study is to test the existence of inhibition of the pacemaker nucleus by the PPn. Immunohistochemical results showed clear anti-GABA immunoreactive labeling of fibers and terminals in the pacemaker nucleus, but no apparent anti-glycine immunoreactivity anywhere in the pacemaker complex. GABA injection into the pacemaker nucleus could induce EOD interruptions that are comparable to the interruptions induced by glutamate injection into the PPn. Application of the GABAA receptor blocker bicuculline methiodide reversibly eliminated the effects of stimulation of the PPn. Thus the EOD interruption behavior in Gymnarchus is mediated through GABAergic inhibition of the pacemaker nucleus by the PPn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in Gymnotoid and Gymnarchid electric fish: a case of convergent evolution of behavior and its sensory basis. J Comp Physiol A 103:97–121

    Article  Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res 287:25–46

    PubMed  CAS  Google Scholar 

  • Carlson BA (2002) Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol 454:440–455

    Article  PubMed  Google Scholar 

  • Carlson BA (2003) Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius. J Neurosci 23:10128–10136

    PubMed  CAS  Google Scholar 

  • Carlson BA, Hopkins CD (2004) Central control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the role of modifiable recurrent inhibition. J Exp Biol 207:1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–852

    Article  Google Scholar 

  • Dye J, Heiligenberg W, Keller CH, Kawasaki M (1989) Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus. Proc Natl Acad Sci 86:8993–8997

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Smith JC (1989) Cellular mechanisms underlying modulation of breathing pattern in mammals. Ann N Y Acad Sci 563:114–130

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Bell CC, Carr CE (1986) Comparisons among electroreceptive teleosts: why are electrosensory systems so similar? In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 465–481

    Google Scholar 

  • Fu J, Lorden JF (1996) An easily constructed carbon fiber recording and microiontophoresis assembly. J Neurosci Methods 68:247–251

    Article  PubMed  CAS  Google Scholar 

  • Grant K, Bell CC, Clausse S, Ravaille M (1986) Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp Neurol 245:514–530

    Article  PubMed  CAS  Google Scholar 

  • Grant K, von der Emde G, Sena LG, Mohr C (1999) Neural command of electromotor output in mormyrids. J Exp Biol 202:1399–1407

    PubMed  Google Scholar 

  • Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, Lansner A, Orlovsky GN, Wallen P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270–279

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Georgopoulos AP (1996) Neural control. Curr Opin Neurobiol 6:741–743

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Matsushima T (1991) The neural network underlying locomotion in lamprey–synaptic and cellular mechanisms. Neuron 7:1–15

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E (1991) Modulation of neural networks for behavior. Annu Rev Neurosci 14:39–57

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion Channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Hopkins CD (1974) Electric communication in fish. Am Sci 62:426–437

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1986) Behavior of mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 527–576

    Google Scholar 

  • Katz PS (1995) Intrinsic and extrinsic neuromodulation of motor circuits. Curr Opin Neurobiol 5:799–808

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol A 173:9–22

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1994) The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating. J Comp Physiol A 174:133–144

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (2001) Cutaneous electrical oscillation in a weakly electric fish, Gymnarchus niloticus. J Comp Physiol A 187:597–604

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neuronal oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol A 165:731–741

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations in the firing pattern of a neuronal oscillator, the medullary pacemaker of gymnotiform electric fish. J Neurosci 10:3896–3904

    PubMed  CAS  Google Scholar 

  • Keller CH (1988) Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter. J Comp Physiol A 162:747–757

    Article  PubMed  CAS  Google Scholar 

  • Keller CH, Kawasaki M, Heiligenberg W (1991) The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. J Comp Physiol A 169:441–450

    Article  PubMed  CAS  Google Scholar 

  • Lauder GV, Liem KF (1983) Patterns of diversity and evolution in ray-finned fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1 University of Michigan Press, Ann Arbor, pp 1–24

    Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375

    PubMed  CAS  Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16:265–297

    Article  PubMed  CAS  Google Scholar 

  • Ramirez JM, Richter DW (1996) The neuronal mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 6:817–825

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JP, Lavoue S, Hopkins CD (2000) Molecular systematics of the African electric fishes (Mormyroidea: teleostei) and a model for the evolution of their electric organs. J Exp Biol 203:665–683

    PubMed  CAS  Google Scholar 

  • Szabo T (1959) Organisation particulière de la comande nerveuse centrale de la décharge chez un Poisson èlectrique, Gymnarchus niloticus. C R Acad Sci Paris 248:2488–2489

    Google Scholar 

  • Szabo T (1962) The activity of cutaneous organs in Gymnarchus niloticus. Life Sci 7:285–286

    Article  Google Scholar 

  • Tegner J, Grillner S (1999) Interactive effects of the GABAergic modulation of calcium channels and calcium-dependent potassium channels in lamprey. J Neurophysiol 81:1318–1329

    PubMed  CAS  Google Scholar 

  • von der Emde G, Sena LG, Niso R, Grant K (2000) The midbrain precommand nucleus of the mormyrid electromotor network. J Neurosci 20:5483–5495

    PubMed  Google Scholar 

  • Zhang Y, Kawasaki M (2006) Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus. J Comp Physiol A 192:509–521

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by grants to M.K. from the National Science Foundation (IBN-0235533). We thank Drs. Bruce Carlson, Otto Friesen and Deforest Mellon for critical reading of the manuscript. All experimental procedures were approved by the University of Virginia Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Kawasaki, M. Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus . J Comp Physiol A 193, 665–675 (2007). https://doi.org/10.1007/s00359-007-0219-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0219-9

Keywords

Navigation