Skip to main content
Log in

Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila

  • Short Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Acute choice behavior in ingesting two different concentrations of sucrose in Drosophila is presumed to include learning and memory. Effects on this behavior were examined for four mutations that block associative learning (dunce, rutabaga, amnesiac, and radish). Three of these mutations cause cyclic AMP signaling defects and significantly reduced taste discrimination. The exception was radish, which affects neither. Electrophysiological recordings confirmed that the sensitivity of taste receptors is almost indistinguishable in all flies, whether wild type or mutant. These results suggest that food choice behavior in Drosophila involves central nervous learning and memory operating via cyclic AMP signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

cAMP:

Cyclic adenosine monophosphate

References

  • Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Physiol Rev Neurosci 28:275–302

    Article  CAS  Google Scholar 

  • Dubnau J, Chiang AS, Tully T (2003) Neural substrates of memory: from synapse to system. J Neurobiol 54(1):238–253

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Tully T (1998) Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21:407–444

    Article  PubMed  CAS  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688

    Article  PubMed  CAS  Google Scholar 

  • Duerr JS, Quinn WG (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79:3646–3650

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi B, Beadle GW (1936) A technique of transplantation for Drosophila. Am Nat 70:218–225

    Article  Google Scholar 

  • Falk R, Bleiser-Avivi N, Atidia J (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–342

    Article  Google Scholar 

  • Folkers E, Drain P, Quinn WG (1993) Radish, a Drosophila mutant deficient in consolidated memory. Proc Natl Acad Sci USA 90:8123–8127

    Article  PubMed  CAS  Google Scholar 

  • Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci 9:1009–1018

    Article  Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418

    Article  PubMed  CAS  Google Scholar 

  • Koseki T, Koganezawa M, Furuyama A, Isono K, Shimada I (2004) A specific receptor site for glycerol, a new sweet tastant for Drosophila: Structure-taste relationship of glycerol in the labellar sugar receptor cell. Chem Senses 29:703–711

    Article  PubMed  CAS  Google Scholar 

  • Kyriacou CP, Hall JC (1984) Learning and memory mutations impair acoustic priming of mating behavior in Drosophila. Nature 308:62–65

    Article  Google Scholar 

  • Livingstone MS, Sziber PP, Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–215

    Article  PubMed  CAS  Google Scholar 

  • Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 12:273–291

    Article  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71:708–712

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Sziber PP, Booker R (1979) The Drosophila memory mutant amnesiac. Nature 277:212–214

    Article  PubMed  CAS  Google Scholar 

  • Salz HK, Kiger JA (1984) Genetic analysis of chromomere 3D4 in Drosophila melanogaster II. Regulation sites for the dunce gene. Genetics 108:377–392

    PubMed  CAS  Google Scholar 

  • Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA (2001) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437

    Article  PubMed  CAS  Google Scholar 

  • Shimada I, Nakao M, Kawazoe Y (1987) Acute differential sensitivity and role of the central nervous system in the feeding behavior of Drosophila melanogaster. Chem Senses 12:481–490

    Article  Google Scholar 

  • Tanimura T, Isono K, Takamura T, Shimada I (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol 147:433–437

    Article  Google Scholar 

  • Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103(5):8005–8013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motosaka, K., Koganezawa, M., Narikawa, S. et al. Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila . J Comp Physiol A 193, 279–283 (2007). https://doi.org/10.1007/s00359-006-0200-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0200-z

Keywords

Navigation