Skip to main content
Log in

Larval lampreys possess a functional lateral line system

  • Short Communication
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Morphology of larval lampreys’ neuromasts was found to be very similar to that of adults. Activity in the lateral line nerve, elicited by a vibrating ball, indicated a functional lateralis system. Analysis revealed at least two populations of afferents, responding to opposite directions of water flow, with adapting responses. The response magnitude increased monotonically with stimulus amplitude. Larval lampreys’ neuromasts were less sensitive than those of teleosts. At low frequencies the response showed a phase lead of 200–220° with respect to the maximum of the ball displacement and a gain that was approximately linearly proportional to frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

LLS:

Lateral line system

PLLN:

Posterior lateral line nerve

References

  • Akoev GN, Muraveiko VM (1984) Physiological properties of lateral line receptors of the lamprey. Neurosci Lett 49:171–173

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 619–641

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology. Gustav Fischer, Stuttgart, Jena, New York, pp 1–115

    Google Scholar 

  • Bleckmann H, Tittel G, Blubaum-Gronau E (1989) The lateral line system of surface-feeding fish: anatomy, physiology, and behavior. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 501–526

    Google Scholar 

  • Bodznick D, Northcutt RG (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212:465–467

    Article  PubMed  CAS  Google Scholar 

  • Braun CB (1996) The sensory biology of the living jawless fishes: a phylogenetic assessment. Brain Behav Evol 48:262–276

    PubMed  CAS  Google Scholar 

  • Cahn PH, Shaw E (1963) Schooling fishes: the role of sensory factors. Anim Behav 11:405–406

    Article  Google Scholar 

  • Cohen AH (1988) Evolution of the vertebrate central pattern generator for locomotion. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movements in vertebrates. Wiley, New York, pp 129–166

    Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 553–586

    Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    PubMed  CAS  Google Scholar 

  • Deliagina TG, Ullen F, Gonzalez MJ, Ehrsson H, Orlovsky GN, Grillner S (1995) Initiation of locomotion by lateral-line photoreceptors in lamprey—behavioral and neurophysiological studies. J Exp Biol 198:2581–2591

    PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    PubMed  CAS  Google Scholar 

  • Gonzalez MJ, Anadon R (1992) Primary projections of the lateral line nerves in larval sea lamprey, Petromyzon marinus L—an HRP study. J Hirnforsch 33:185–194

    PubMed  CAS  Google Scholar 

  • Grillner S, Parker D, El Manira A (1998) Vertebrate locomotion—a lamprey perspective. Ann NY Acad Sci 860:1–18

    Article  PubMed  CAS  Google Scholar 

  • Hardisty MW, Potter IC (1971) The behaviour, ecology, and growth of larval lampreys. In: Hardisty MW, Potter IC (eds) The biology of lampreys. Academic, New York, pp 85–127

    Google Scholar 

  • Janssen J, Coombs S, Pride S (1990) Feeding and orientation of mottled sculpin, Cottus bairdi, to water jets. Environ Biol Fishes 29:43–50

    Article  Google Scholar 

  • Johnston JB (1905) The cranial nerve components of Petromyzon. Morphol Jahrb 34:149–203

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 83–130

    Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–70

    Article  PubMed  Google Scholar 

  • Katori Y, Takasaka T, Ishikawa M, Tonosaki A (1994) Fine structure and lectin histochemistry of the apical surface of the free neuromast of Lampetra japonica. Cell Tissue Res 276:245–252

    Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kusunoki T (1990) Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica. J Comp Neurol 295:277–289

    Article  PubMed  CAS  Google Scholar 

  • Kroese ABA, Schellart NAM (1987) Evidence for velocity-sensitive and acceleration-sensitive units in the trunk lateral line of the trout. J Physiol (Lond) 394:P13–P13

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    PubMed  CAS  Google Scholar 

  • Lane EB, Whitear M (1982) Sensory structure at the surface of fish skin. II. Lateralis system. Zool J Linn Soc (Lond) 76:19–28

    Article  Google Scholar 

  • Lannoo MJ (1987) Neuromast topography in anuran amphibians. J Morphol 191:115–129

    Article  Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movement of planktonic prey. Science 235:195–196

    Article  PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Nelson SJ (1984) Fishes of the world. John Wiley & Sons, New York

    Google Scholar 

  • Northcutt GR (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194:963–965

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Ronan M, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30:62–61

    PubMed  CAS  Google Scholar 

  • Rovainen CM (1982) Neurophysiology. In: Hardisty MW, Potter IC (eds) The biology of lampreys. Academic, London, pp 1–136

    Google Scholar 

  • Satou M, Takeuchi HA, Nishii J, Tanabe M, Kitamura S, Okumoto N, Iwata M (1994) Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 174:539–549

    Google Scholar 

  • van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94:67–85

    Article  PubMed  Google Scholar 

  • van Netten SM, Kroese ABA (1987) Laser interferometric measurements on the dynamic behavior of the cupula in the fish lateral line. Hear Res 29:55–61

    Article  PubMed  Google Scholar 

  • van Netten SM, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weeg MS, Bass AH (2002) Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. J Neurophysiol 88:1252–1262

    PubMed  Google Scholar 

  • Weissert R, Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:375–381

    Article  Google Scholar 

  • Yamada Y (1973) Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey, Entosphenus japonicus. J Ultrastruct Res 43:1–17

    Article  PubMed  CAS  Google Scholar 

  • Young JZ (1935) The photoreceptors of lampreys I. Light-sensitive fibres in the lateral line nerves. J Exp Biol 12:229–238

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr Timothy Maugel (University of Maryland, Electron Microscopy Laboratory) for assistance with SEM, Dr Tim Kiemel for help with the data analysis, and Dr Christopher Braun (Hunter College, CUNY) for valuable discussion. Experimental procedures were in compliance with the University of Maryland IACUC regulations. This work was supported by NIH grant 1RO1NS054271 to AHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelman, S., Ayali, A., Tytell, E.D. et al. Larval lampreys possess a functional lateral line system. J Comp Physiol A 193, 271–277 (2007). https://doi.org/10.1007/s00359-006-0183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0183-9

Keywords

Navigation