Skip to main content

Advertisement

Log in

Evidence of an oscillating peripheral clock in an equine fibroblast cell line and adipose tissue but not in peripheral blood

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The master mammalian pacemaker in the brain controls numerous diverse physiological and behavioral processes throughout the organism. Timing information is continually transmitted from the master clock to peripheral organs to synchronize rhythmic daily oscillations of clock gene transcripts and control local physiology. To investigate the presence of peripheral clocks in the horse, quantitative real-time RT-PCR assays were designed to detect levels of equine clock genes. Expression profiles for Per2, Bmal1 and Cry1 were first determined in a synchronized equine cell line. Subsequently, expression in equine whole blood and adipose tissue was assessed. Robust circadian oscillations of Per2, Bmal1 and Cry1 were observed in vitro. A synchronized molecular clock was also demonstrated in equine adipose tissue although oscillation of Bmal1 was less robust than that of Per2 and Cry1. In contrast to previous studies in humans and rats however, there was no evidence of synchronized clock gene expression in equine peripheral blood. These studies suggest that synchronous control of clock gene oscillation in equine peripheral blood is not as tightly regulated as in other species and may reflect the influence of different evolutionary challenges modifying the function of a peripheral clock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BCS:

Body condition score

DMEM:

Dulbecco’s modified Eagle medium

LD:

Light–dark

RT-PCR:

Reverse transcription-polymerase chain reaction

SCN:

Suprachiasmatic nucleus

References

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Allen G, Rappe J, Earnest DJ, Cassone VM (2001) Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci 21:7937–7943

    PubMed  CAS  Google Scholar 

  • Andersson H, Johnston JD, Messager S, Hazlerigg D, Lincoln G (2005) Photoperiod regulates clock gene rhythms in the ovine liver. Gen Comp Endocrinol 142:357–363

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A (2005) Rhythmic mRNA expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146:5631–5636

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi T, Shimba S, Tezuka M (2005) Characteristics of circadian gene expressions in mice white adipose tissue and 3T3-L1 adipocytes. J Health Sci 51:21–32

    Article  CAS  Google Scholar 

  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A, Marcacci L, Schibler U (2000) Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol 10:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ (1998) Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 275:R291–R299

    PubMed  CAS  Google Scholar 

  • Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJ, Ben-David Y (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158:1793–1801

    PubMed  CAS  Google Scholar 

  • Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    Article  PubMed  CAS  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  PubMed  CAS  Google Scholar 

  • Challet E, Pevet P (2003) Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front Biosci 8:s246–s257

    Article  PubMed  CAS  Google Scholar 

  • Dallaire A (1986) Rest behavior. Vet Clin North Am Equine Pract 2: 591–607

    PubMed  CAS  Google Scholar 

  • Desai VG, Moland CL, Branham WS, Delongchamp RR, Fang H, Duffy PH, Peterson CA, Beggs ML, Fuscoe JC (2004) Changes in expression level of genes as a function of time of day in the liver of rats. Mutat Res 549:115–129

    PubMed  CAS  Google Scholar 

  • Fitzgerald BP, Davison LA, McManus CJ (2000) Evidence for a seasonal variation in the ability of exogenous melatonin to suppress prolactin secretion in the mare. Domest Anim Endocrinol 18:395–408

    Article  PubMed  CAS  Google Scholar 

  • Gavrila A, Peng CK, Chan JL, Mietus JE, Goldberger AL, Mantzoros CS (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88:2838–2843

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL (2005) Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc Natl Acad Sci USA 102:3111–3116

    Article  PubMed  CAS  Google Scholar 

  • Henneke DR, Potter GD, Kreider JL, Yeates BF (1983) Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet J 15:371–372

    PubMed  CAS  Google Scholar 

  • Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479

    Article  PubMed  CAS  Google Scholar 

  • Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ (2002) Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12:55–65

    Article  PubMed  CAS  Google Scholar 

  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert S.M (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  PubMed  CAS  Google Scholar 

  • Kusanagi H, Mishima K, Satoh K, Echizenya M, Katoh T, Shimizu T (2004) Similar profiles in human period1 gene expression in peripheral mononuclear and polymorphonuclear cells. Neurosci Lett 365:124–127

    Article  PubMed  CAS  Google Scholar 

  • Lincoln G, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci USA 99:13890–13895

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa Y, Funahashi T, Kihara S, Shimomura I (2004) Adiponectin and metabolic syndrome. Arterioscler Thromb Vas Biol 24:29–33

    Article  CAS  Google Scholar 

  • Muhlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96

    Article  PubMed  CAS  Google Scholar 

  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  PubMed  CAS  Google Scholar 

  • Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998a) Humoral signals mediate the circadian expression of rat period homologue (rPer2) mRNA in peripheral tissues. Neurosci Lett 256:117–119

    Article  CAS  Google Scholar 

  • Oishi K, Sakamoto K, Okada T, Nagase T, Ishida N (1998b) Antiphase circadian expression between BMAL1 and period homologue mRNA in the suprachiasmatic nucleus and peripheral tissues of rats. Biochem Biophys Res Commun 253:199–203

    Article  CAS  Google Scholar 

  • Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  • Piccione G, Caola G, Refinetti R (2002) The circadian rhythm of body temperature of the horse. Biol Rhythm Res 33:113–119

    Article  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  CAS  Google Scholar 

  • Rosbash M (1998) Why the rat-1 fibroblast should replace the SCN as the in vitro model of choice. Cell 93:917–919

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay LS, Youngren JF, Havel PJ, Pratley RE, Bogardus C, Tataranni PA (2002) Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 51:1884–1888

    Article  PubMed  CAS  Google Scholar 

  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  PubMed  CAS  Google Scholar 

  • Takata M, Burioka N, Ohdo S, Takane H, Terazono H, Miyata M, Sako T, Suyama H, Fukuoka Y, Tomita K, Shimizu E (2002) Daily expression of mRNAs for the mammalian Clock genes Per2 and clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol 90:263–269

    Article  PubMed  CAS  Google Scholar 

  • Teboul M, Barrat-Petit MA, Li XM, Claustrat B, Formento JL, Delaunay F, Levi F, Milano G (2005) Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med 83:693–699

    Article  PubMed  CAS  Google Scholar 

  • Teixeira VL, Antunes-Rodrigues J, Migliorini RH (1973) Evidence for centers in the central nervous system that selectively regulate fat mobilization in the rat. J Lipid Res 14:672–677

    PubMed  CAS  Google Scholar 

  • Terazono H, Mutoh T,Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S (2003) Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci USA 100:6795–6800

    Article  PubMed  CAS  Google Scholar 

  • Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14:2289–2295

    Article  PubMed  CAS  Google Scholar 

  • Yagita K, Tamanini F, van Der Horst GT, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–281

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18

    Article  PubMed  CAS  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346

    Article  PubMed  CAS  Google Scholar 

  • Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, Takahashi JS, Schambelan M, Conklin BR (2003) Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 4:R61

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Peter J. Timoney, Dr. Marilyn J. Duncan and Dr. Ernest Bailey for constructive comment on the manuscript. We also acknowledge Verda A. Davis for assistance with Graph Pad software and the staff of the University of Kentucky research farm for care and handling of the animals. All procedures involving animals were approved by the Institutional Animal Care and Use Committee (IACUC). This work was supported by funds from the Kentucky Equine Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Murphy.

Additional information

An abstract containing some of these data was presented at the 35th Annual Meeting of the Society for Neuroscience, Washington, DC, USA, 2005, program number: 60.15. The research reported in this article (No. 05-14-129) is published in connection with a project of the Kentucky Agricultural Experiment Station and is published with approval of its director.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, B.A., Vick, M.M., Sessions, D.R. et al. Evidence of an oscillating peripheral clock in an equine fibroblast cell line and adipose tissue but not in peripheral blood. J Comp Physiol A 192, 743–751 (2006). https://doi.org/10.1007/s00359-006-0108-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0108-7

Keywords

Navigation