Skip to main content
Log in

Variability of diurnality in laboratory rodents

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The locomotor activity rhythms of domestic mice, laboratory rats, Syrian hamsters, Siberian hamsters, Mongolian gerbils, degus, and Nile grass rats were compared. Running-wheel activity was monitored under a light–dark cycle with 12 h of light and 12 h of darkness per day. Nile grass rats were found to be reliably diurnal, whereas laboratory rats, Siberian hamsters, domestic mice, and Syrian hamsters were reliably nocturnal. Both diurnal and nocturnal subgroups were observed in Mongolian gerbils and degus. A downward gradient of diurnality was observed from Mongolian gerbils classified as diurnal, degus classified as diurnal, gerbils classified as nocturnal, and degus classified as nocturnal. Nocturnal degus remained nocturnal when tested with an infrared motion detector without running wheels. Thus, although the diurnal–nocturnal dichotomy could be applied to some of the species, it was not appropriate for others. The dichotomy may reflect researchers’ needs for systematization more than a natural distinction between species. Through mechanisms as yet poorly understood, the balance between entraining and masking processes seems to generate a gradient of temporal niches that runs from predominantly diurnal species to predominantly nocturnal species with many chronotypes in between, including species that exhibit wide intra-species gradients of temporal niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

LD:

Light–dark cycle

SD:

Standard deviation

References

  • Anchordoquy HC, Lynch GR (2000) Timing of testicular recrudescence in Siberian hamsters is unaffected by pinealectomy or long-day photoperiod after 9 weeks in short days. J Biol Rhythms 15:406–416

    Article  PubMed  CAS  Google Scholar 

  • Aschoff J (1966) Circadian activity pattern with two peaks. Ecology 47:657–662

    Article  Google Scholar 

  • Aschoff J, von Goetz C (1989) Masking of circadian activity rhythms in canaries by light and dark. J Biol Rhythms 4:29–38

    Article  PubMed  CAS  Google Scholar 

  • Blanchong JA, Smale L (2000) Temporal patterns of activity of the unstriped Nile rat, Arvicanthis niloticus. J Mammal 81:595–599

    Article  Google Scholar 

  • Blanchong JA, McElhinny TL, Mahoney MM, Smale L (1999) Nocturnal and diurnal rhythms in the unstriped Nile rate, Arvicanthis niloticus. J Biol Rhythms 14:364–377

    Article  PubMed  CAS  Google Scholar 

  • Boulos Z, Macchi M, Houpt TA, Terman M (1996) Photic entrainment in hamsters: effects of simulated twilights and nest box availability. J Biol Rhythms 11:216–233

    Article  PubMed  CAS  Google Scholar 

  • Cochran WW (1987) Orientation and other migratory behaviours of a Swainson’s thrush followed for 1500 km. Anim Behav 35:927–928

    Article  Google Scholar 

  • Conn CA, Borer KT, Kluger MJ (1990) Body temperature rhythm and response to pyrogen in exercising and sedentary hamsters. Med Sci Sports Exerc 22:636–642

    Article  PubMed  CAS  Google Scholar 

  • Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M (2004) Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Mol Brain Res 124:143–151

    Article  CAS  PubMed  Google Scholar 

  • Davis FC, Menaker M (1981) Development of the mouse circadian pacemaker: independence from environmental cycles. J Comp Physiol A 143:527–539

    Article  Google Scholar 

  • DeCoursey PJ, Pius S, Sandlin C, Wethey D, Schull J (1998) Relationship of circadian temperature and activity rhythms in two rodent species. Physiol Behav 65:457–463

    Article  PubMed  CAS  Google Scholar 

  • Edelstein K, Mrosovsky N (2001) Behavioral responses to light in mice with dorsal lateral geniculate lesions. Brain Res 918:107–112

    Article  PubMed  CAS  Google Scholar 

  • Engelmann W (1988) Evolution and selective advantage of circadian rhythms. Acta Physiol Pol 39:345–356

    PubMed  CAS  Google Scholar 

  • Fidler AE, Gwinner E (2003) Comparative analysis of avian BMAL1 and CLOCK protein sequences: a search for features associated with owl nocturnal behavior. Comp Biochem Physiol B 136:861–874

    Article  PubMed  CAS  Google Scholar 

  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    Article  PubMed  CAS  Google Scholar 

  • Francis AJP, Coleman GJ (1988) The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol Behav 43:471–477

    Article  PubMed  CAS  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  PubMed  CAS  Google Scholar 

  • Goldman BD, Goldman SL, Riccio AP, Terkel J (1997) Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J Biol Rhythms 12:348–361

    Article  PubMed  CAS  Google Scholar 

  • Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23:7093–7106

    PubMed  CAS  Google Scholar 

  • Halberg F (1953) Some physiological and clinical aspects of 24-hour periodicity. J Lancet 73:20–32

    PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Hays WL (1988) Statistics, 4th edn. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Hofstetter JR, Hofstetter AR, Hughes AM, Mayeda AR (2005) Intermittent long-wavelength red light increases the period of daily locomotor activity in mice. J Circadian Rhythms 3:8

    Article  PubMed  Google Scholar 

  • Honma K, Hiroshige T (1978) Simultaneous determination of circadian rhythms of locomotor activity and body temperature in the rat. Jpn J Physiol 28:159–169

    PubMed  CAS  Google Scholar 

  • Iigo M, Tabata M (1996) Circadian rhythms of locomotor activity in the goldfish Carassius auratus. Physiol Behav 60:775–781

    PubMed  CAS  Google Scholar 

  • Ikeda M, Inoué S (1998) Simultaneous recording of circadian rhythms of brain and intraperitoneal temperatures and locomotor and drinking activities in the rat. Biol Rhythm Res 29:142–150

    Article  Google Scholar 

  • Kas MJH, Edgar DM (1999) A nonphotic stimulus inverts the diurnal–nocturnal phase preference in Octodon degus. J Neurosci 19:328–333

    PubMed  CAS  Google Scholar 

  • Kenagy GJ, Nespolo RF, Vásquez RA, Bozinovic F (2002) Daily and seasonal limits of time and temperature to activity of degus. Rev Chil Hist Nat 75:567–581

    Google Scholar 

  • Kirk RE (1995) Experimental design: procedures for the behavioral sciences, 3rd edn. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Klerman EB, Shanahan TL, Brotman DJ, Rimmer DW, Emens JS, Rizzo JF, Czeisler CA (2002) Photic resetting of the human circadian pacemaker in the absence of conscious vision. J Biol Rhythms 17:548–555

    Article  PubMed  CAS  Google Scholar 

  • Kramer K, Voss HP, Grimbergen J, Bast A (1998) Circadian rhythms of heart rate, body temperature, and locomotor activity in freely moving mice measured with radio telemetry. Lab Anim 27(8):23–26

    Google Scholar 

  • Kurumiya S, Kawamura H (1988) Circadian oscillation of the multiple unit activity in the guinea pig suprachiasmatic nucleus. J Comp Physiol A 162:301–308

    Article  PubMed  CAS  Google Scholar 

  • Labyak SE, Lee TM, Goel N (1997) Rhythm chronotypes in a diurnal rodent, Octodon degus. Am J Physiol 273:R1058-R1066

    PubMed  CAS  Google Scholar 

  • Lambert CM, Machida KK, Smale L, Nunez AA, Weaver DR (2005) Analysis of the prokineticin 2 system in a diurnal rodent, the unstriped Nile grass rat (Arvicanthis niloticus). J Biol Rhythms 20:206–218

    Article  PubMed  CAS  Google Scholar 

  • Lincoln G, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci USA 99:13890–13895

    Article  PubMed  CAS  Google Scholar 

  • Low-Zeddies SS, Takahashi JS (2001) Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 105:25–42

    Article  PubMed  CAS  Google Scholar 

  • Mahoney M, Bult A, Smale L (2001) Phase response curve and light-induced Fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms 16:149–162

    Article  PubMed  CAS  Google Scholar 

  • Marques MD, Waterhouse JM (1994) Masking and the evolution of circadian rhythmicity. Chronobiol Int 11:146–155

    Article  PubMed  CAS  Google Scholar 

  • Meinrath M, D’Amato MR (1979) Interrelationships among heart rate, activity, and body temperature in the rat. Physiol Behav 22:491–498

    Article  PubMed  CAS  Google Scholar 

  • Merrill SB, Mech LD (2003) The usefulness of GPS telemetry to study wolf circadian and social activity. Wildl Soc Bull 31:947–960

    Google Scholar 

  • Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16: 415–429

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (2003a) Aschoff’s rule in retinally degenerate mice. J Comp Physiol A 189:75–78

    CAS  Google Scholar 

  • Mrosovsky N (2003b) Beyond the suprachiasmatic nucleus. Chronobiol Int 20:1–8

    Article  CAS  Google Scholar 

  • Mrosovsky N, Hattar S (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20:989–999

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Hattar S (2005) Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol A 191:1011–1024

    Article  CAS  Google Scholar 

  • Mrosovsky N, Foster RG, Salmon PA (1999) Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol A 184:423–428

    Article  PubMed  CAS  Google Scholar 

  • Nelissen M, Nelissen-Joris N (1975) On the diurnal rhythm of activity of Meriones unguiculatus (Milne-Edwards, 1867). Acta Zool Pathol Antverp 61:25–30

    PubMed  Google Scholar 

  • Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6:305–323

    PubMed  CAS  Google Scholar 

  • Novak CM, Albers HE (2004a) Novel phase-shifting effects of GABAA receptor activation in the suprachiasmatic nucleus of a diurnal rodent. Am J Physiol 286:R820–R825

    CAS  Google Scholar 

  • Novak CM, Albers HE (2004b) Circadian phase alteration by GABA and light differs in diurnal and nocturnal rodents during the day. Behav Neurosci 118:498–504

    Article  CAS  Google Scholar 

  • Novak CM, Harris JA, Smale L, Nunez AA (2000) Suprachiasmatic nucleus projections to the paraventricular thalamic nucleus in nocturnal rats (Rattus norvegicus) and diurnal Nile grass rats (Arvicanthis niloticus). Brain Res 874:147–157

    Article  PubMed  CAS  Google Scholar 

  • Nunez AA, Bult A, McElhinny TL, Smale L (1999) Daily rhythms of Fos expression in hypothalamic targets of the suprachiasmatic nucleus in diurnal and nocturnal rodents. J Biol Rhythms 14:300–306

    Article  PubMed  CAS  Google Scholar 

  • Oosthuizen MK, Cooper HM, Bennett NC (2003) Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). J Biol Rhythms 18:481–490

    Article  PubMed  Google Scholar 

  • Oster H, Avivi A, Joel A, Albrecht U, Nevo E (2002) A switch from diurnal to nocturnal activity in S. ehrenbergi is accompanied by an uncoupling of light input and the circadian clock. Curr Biol 12:1919–1922

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–2216

    Article  PubMed  CAS  Google Scholar 

  • Probst B (1992) An automated method for recording scent marking in Mongolian gerbils. Physiol Behav 52:661–663

    Article  PubMed  CAS  Google Scholar 

  • Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLOS Biol 2:924–936

    Article  CAS  Google Scholar 

  • Redlin U, Mrosovsky N (1999) Masking of locomotor activity in hamsters. J Comp Physiol A 184:429–437

    Article  PubMed  CAS  Google Scholar 

  • Redlin U, Mrosovsky N (2004) Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J Biol Rhythms 19:58–67

    Article  PubMed  Google Scholar 

  • Refinetti R (1996a) Comparison of the body temperature rhythms of diurnal and nocturnal rodents. J Exp Zool 275:67–70

    Article  CAS  Google Scholar 

  • Refinetti R (1996b) Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent, Octodon degus. Physiol Behav 60:959–961

    CAS  Google Scholar 

  • Refinetti R (1999) Relationship between the daily rhythms of locomotor activity and body temperature in eight mammalian species. Am J Physiol 277:R1493–R1500

    PubMed  CAS  Google Scholar 

  • Refinetti R (2004a) Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural environment. Physiol Behav 82:285–294

    Article  CAS  Google Scholar 

  • Refinetti R (2004b) Non-stationary time series and the robustness of circadian rhythms. J Theor Biol 227:571–581

    Article  Google Scholar 

  • Refinetti R (2004c) Parameters of photic resetting of the circadian system of a diurnal rodent, the Nile grass rat. Acta Sci Vet 32:1–6

    Google Scholar 

  • Refinetti R (2004d) The Nile grass rat as a laboratory animal. Lab Anim 33(9):54–57

    Article  Google Scholar 

  • Roenneberg T, Merrow M (2002) Life before the clock: modeling circadian evolution. J Biol Rhythms 17:495–505

    Article  PubMed  Google Scholar 

  • Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O’Hara BF (2002a) Role of melanopsin in circadian responses to light. Science 298:2211–2213

    Article  CAS  Google Scholar 

  • Ruby NF, Joshi N, Heller HC (2002b) Constant darkness restores entrainment to phase-delayed Siberian hamsters. Am J Physiol 283:R1314–R1320

    CAS  Google Scholar 

  • Rutter J, Reick M, McKnight SL (2002) Metabolism and the control of circadian rhythms. Ann Rev Biochem 71:307–331

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MD, Nunez AA, Smale L (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127:13–23

    Article  PubMed  CAS  Google Scholar 

  • Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, Foster RG (2003) Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17:1793–1801

    Article  PubMed  Google Scholar 

  • Sharma VK, Lone SR, Mathew D, Goel A, Chandrashekaran MK (2004) Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol Int 21:297–308

    Article  PubMed  Google Scholar 

  • Smale L, Lee T, Nunez AA (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythms 18:356–366

    Article  PubMed  Google Scholar 

  • Sokolove PG, Bushell WN (1978) The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72:131–160

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner S, Stieglitz A, Ruf T (2002) Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light–dark cycle induced by short light pulses. J Biol Rhythms 17:248–258

    Article  PubMed  Google Scholar 

  • Tokura H, Oishi T (1985) Circadian locomotor activity rhythm under the influences of temperature cycle in the Djungarian hamster, Phodopus sungorus, entrained by 12 hour light–12 hour dark cycle. Comp Biochem Physiol A 81:271–275

    Article  PubMed  CAS  Google Scholar 

  • Weinert D, Waterhouse J (1998) Diurnally changing effects of locomotor activity on body temperature in laboratory mice. Physiol Behav 63:837–843

    Article  PubMed  CAS  Google Scholar 

  • Weinert D, Fritzche P, Gattermann R (2001) Activity rhythms of wild and laboratory golden hamsters (Mesocricetus auratus) under entrained and free-running conditions. Chronobiol Int 18:921–932

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Yokota Y, Ishikawa A, Yasuo S, Hayashi N, Suzuki T, Okabayashi N, Namikawa T, Ebihara S (2002) Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice. J Biol Rhythms 17:512–519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research reported here was partially supported by National Institute of Mental Health Grant MH-066826 and National Science Foundation Grant IBN-0343917 to the author. Experiments were conducted in accordance with the regulations of the Guide for the Care and Use of Laboratory Animals (U.S. National Research Council, 1996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Refinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Refinetti, R. Variability of diurnality in laboratory rodents. J Comp Physiol A 192, 701–714 (2006). https://doi.org/10.1007/s00359-006-0093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0093-x

Keywords

Navigation