Skip to main content
Log in

Embryonic electrical connections appear to prefigure a behavioral circuit in the leech CNS

  • ORIGINAL PAPER
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

During development, many embryos show electrical coupling among neurons that is spatially and temporally regulated. For example, in vertebrate embryos extensive dye coupling is seen during the period of circuit formation, suggesting that electrical connections could prefigure circuits, but it has been difficult to identify which neuronal types are coupled. We have used the leech Hirudo medicinalis to follow the development of electrical connections within the circuit that produces local bending. This circuit consists of three layers of neurons: four mechanosensory neurons (P cells), 17 identified interneurons, and approximately 24 excitatory and inhibitory motor neurons. These neurons can be identified in embryos, and we followed the spatial and temporal dynamics as specific connections developed. Injecting Neurobiotin into identified cells of the circuit revealed that electrical connections were established within this circuit in a precise manner from the beginning. Connections first appeared between motor neurons; mechanosensory neurons and interneurons started to connect at least a day later. This timing correlates with the development of behaviors, so the pattern of emerging connectivity could explain the appearance first of spontaneous behaviors (driven by a electrically coupled motor network) and then of evoked behaviors (when sensory neurons and interneurons are added to the circuit).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bocksaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098

    PubMed  CAS  Google Scholar 

  • Bennett MVL (2000a) Electrical synapses, a personal perspective (or history). Brain Res Rev 32:16–28

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL (2000b) Seeing is relieving: electrical synapses between visualized neurons. Nat Neurosci 3:7–9

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the Mammalian Brain. Newron 41:495–511

    CAS  Google Scholar 

  • Bittman K, Owens DF, Kriegstein AR, Loturco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044

    PubMed  CAS  Google Scholar 

  • Bittman K, Becker DL, Cicirata F, Parnavelas JG (2002) Connexin expression in homotypic and heterotypic cell coupling in the developing cerebral cortex. J Comp Neurol 443:201–212

    Article  PubMed  CAS  Google Scholar 

  • Bittman KS, Panzer JA, Balice-Gordon RJ (2004) Patterns of cell–cell coupling in embryonic spinal cord studied via ballistic delivery of gap-junction-permeable dyes. J Comp Neurol 477:273–285

    Article  PubMed  CAS  Google Scholar 

  • Chang Q, Gonzalez M, Pinter MJ, Balice-Gordon RJ (1999) Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 19:10813–10828

    PubMed  CAS  Google Scholar 

  • Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  PubMed  CAS  Google Scholar 

  • Dykes IM, Macagno ER (2004) Role of gap junctional communication in synaptogenesis by an identified neuron in the medicinal leech. In: Washington DSfN (ed) 34th annual meeting of the society for neuroscience in San Diego, San Diego, California, p 387.314

  • Dykes IM, Freeman FM, Bacon JP, Davies JA (2004) Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis. J Neurosci 24:886–894

    Article  PubMed  CAS  Google Scholar 

  • Eisenhart FJ (2000) Development of specific chemical and electrical synapses in the longitudinal motor neuron circuit of the leech, Doctoral Thesis, Neurobiology Section, University of California

  • Fan RJ, Marin-Burgin A, French KA, Friesen WO (2005) A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. J Comp Physiol A. DOI:10.1007/s00359-005-0047-8

  • Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653–656

    Article  PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Froes MM, Correia AHP, Garcia-Abreu J, Spray DC, de Carvalho ACC, Neto VM (1999) Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci USA 96:7541–7546

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145:289–325

    PubMed  CAS  Google Scholar 

  • Galarreta W, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402:72–75

    Article  PubMed  CAS  Google Scholar 

  • Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 507:219–236

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402:75–79

    Article  PubMed  CAS  Google Scholar 

  • Gu XN, Spitzer NC (1997) Breaking the code—regulation of neuronal differentiation by spontaneous calcium transients. Dev Neurosci 19:33–41

    Article  PubMed  CAS  Google Scholar 

  • Kandler K, Katz LC (1995) Neuronal coupling and uncoupling in the developing nervous system. Curr Opin Neurobiol 5:98–105

    Article  PubMed  CAS  Google Scholar 

  • Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kiehn O, Tresch MC (2002) Gap junctions and motor behavior. Trends Neurosci 25:108–115

    Article  PubMed  CAS  Google Scholar 

  • Kristan WB Jr (1982) Sensory and motor neurons responsible for the local bending response in leeches. J Exp Biol 96:161–180

    Google Scholar 

  • Kristan WB Jr, Eisenhart FJ, Johnson LA, French KA (2000) Development of neuronal circuits and behaviors in the medicinal leech. Brain Res Bull 53:561–570

    Article  PubMed  Google Scholar 

  • Lewis JE, Kristan WB Jr (1998) A neuronal network for computing population vectors in the leech. Nature 391:76–79

    Article  PubMed  CAS  Google Scholar 

  • Lo Turco JJ, Kriegstein AR (1991) Clusters of coupled neuroblasts in embryonic neocortex. Science 252:563–566

    Article  PubMed  CAS  Google Scholar 

  • Lockery SR, Kristan WB Jr (1990) Distributed processing of sensory information in the leech II. Identification of interneurons contributing to the local bending reflex. J Neurosci 10:1816–1829

    PubMed  CAS  Google Scholar 

  • Lohr C, Deitmer JW (1997) Structural and physiological properties of leech glial cells as studied by confocal microscopy. Exp Biol On line 2:8

    Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Marin-Burgin A, Kristan WB, French KA (2004) Using voltage sensitive dyes to study conectivity among neurons during development of sensory-motor circuits in the leech. Program No. In: Washington DSfN (ed) Abstract viewer/itinerary planner. Society for Neuroscience, San Diego, Washington

  • Marin-Burgin A, Eisenhart FJ, Baca MS, Kristan WB Jr, French KA (2005) Sequential development of electrical and chemical synaptic connections generates a specific behavioral circuit in the leech. J Neurosci 25:2478–2489

    Article  PubMed  CAS  Google Scholar 

  • Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19:3007–3022

    PubMed  CAS  Google Scholar 

  • Muller KJ, Nicholls JG, Stent GS (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Nadarajah B, Jones AM, Evans WH, Parnavelas JG (1997) Differential expression of connexins during neocortical development and neuronal circuit formation. J Neurosci 17:3096–3111

    PubMed  CAS  Google Scholar 

  • O’Donovan MJ, Chub N (1997) Population behavior and self-organization in the genesis of spontaneous rhythmic activity by developing spinal networks. Semin Cell Dev Biol 8:21–28

    Article  PubMed  CAS  Google Scholar 

  • Ort CA, Kristan WB Jr, Stent GS (1974) Neuronal control of swimming in the medicinal leech part 2 identification and connections of motor neurons. J Comp Physiol 94:121–154

    Article  Google Scholar 

  • Peinado A, Yuste R, Katz LC (1993) Gap junctional communication and the development of local circuits in neocortex. Cereb Cortex 3:488–498

    Article  PubMed  CAS  Google Scholar 

  • Penn AA, Wong ROL, Shatz CJ (1994) Neuronal coupling in the developing mammalian retina. J Neurosci 14:3805–3815

    PubMed  CAS  Google Scholar 

  • Rela L, Szczupak L (2003) Coactivation of motoneurons regulated by a network combining electrical and chemical synapses. J Neurosci 23:682–692

    PubMed  CAS  Google Scholar 

  • Rela L, Szczupak L (2005) Gap junctions: their importance for the dynamics of neural circuits. Mol Neurobiol 30:341–358

    Article  Google Scholar 

  • Reynolds SA, French KA, Baader A, Kristan WB Jr (1998a) Development of spontaneous and evoked behaviors in the medicinal leech. J Comp Neurol 402:168–180

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SA, French KA, Baader A, Kristan WB Jr (1998b) Staging of middle and late embryonic development in the medicinal leech, Hirudo medicinalis. J Comp Neurol 402:155–167

    Article  PubMed  CAS  Google Scholar 

  • Roerig B, Feller MB (2000) Neurotransmitters and gap junctions in developing neural circuits. Brain Res Rev 32:86–114

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TH, Rabinowitz D, Unni V, Kumar VS, Smetters DK, Tsiola A, Yuste R (1998) Networks of coactive neurons in developing layer 1. Neuron 20:541–552

    Article  PubMed  CAS  Google Scholar 

  • Suster ML, Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416:174–178

    Article  PubMed  CAS  Google Scholar 

  • Szabo TM, Faber DS, Zoran MJ (2004) Transient electrical coupling delays the onset of chemical neurotransmission at developing synapses. J Neurosci 24:112–120

    Article  PubMed  CAS  Google Scholar 

  • Tresch MC, Kiehn O (2000) Motor coordination without action potentials in the mammalian spinal cord. Nat Neurosci 3:593–599

    Article  PubMed  CAS  Google Scholar 

  • Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661

    Article  PubMed  CAS  Google Scholar 

  • Wadepuhl M (1989) Depression of excitatory motoneurons by a single neuron in the leech central nervous system. J Exp Biol 143:509–528

    PubMed  CAS  Google Scholar 

  • Wang HJ, Macagno ER (1997) The establishment of peripheral sensory arbors in the leech—in vivo time-lapse studies reveal a highly dynamic process. J Neurosci 17:2408–2419

    PubMed  CAS  Google Scholar 

  • Watanabe A (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. J Physiol 8:305–318

    CAS  Google Scholar 

  • Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669

    Article  PubMed  CAS  Google Scholar 

  • Zoccolan D, Torre V (2002) Using optical flow to characterize sensory-motor interactions in a segment of the medicinal leech. J Neurosci 22:2283–2298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH research grant NS35336 to WBK, a Fundacion Antorchas grant to AMB and an NIH training grant T32AG00216 to FJE. We thank Pablo E. Schilman for assistance with statistical analyses and comments on the manuscript. The experiments comply with the “Principles of animal care”, publication No. 86–23, revised 1985, of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Marin-Burgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin-Burgin, A., Eisenhart, F.J., Kristan, W.B. et al. Embryonic electrical connections appear to prefigure a behavioral circuit in the leech CNS. J Comp Physiol A 192, 123–133 (2006). https://doi.org/10.1007/s00359-005-0055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0055-8

Keywords

Navigation