Skip to main content
Log in

Prey size selection and distance estimation in foraging adult dragonflies

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

To determine whether perching dragonflies visually assess the distance to potential prey items, we presented artificial prey, glass beads suspended from fine wires, to perching dragonflies in the field. We videotaped the responses of freely foraging dragonflies (Libellula luctuosa and Sympetrum vicinum—Odonata, suborder Anisoptera) to beads ranging from 0.5 mm to 8 mm in diameter, recording whether or not the dragonflies took off after the beads, and if so, at what distance. Our results indicated that dragonflies were highly selective for bead size. Furthermore, the smaller Sympetrum preferred beads of smaller size and the larger Libellula preferred larger beads. Each species rejected beads as large or larger than their heads, even when the beads subtended the same visual angles as the smaller, attractive beads. Since bead size cannot be determined without reference to distance, we conclude that dragonflies are able to estimate the distance to potential prey items. The range over which they estimate distance is about 1 m for the larger Libellula and 70 cm for the smaller Sympetrum. The mechanism of distance estimation is unknown, but it probably includes both stereopsis and the motion parallax produced by head movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baird JM, May ML (1997) Foraging behavior of Pachydiplax longipennis (Odonata: Libellulidae). J Insect Behav 10:655–678

    Article  Google Scholar 

  • Baldus K (1926) Experimentelle Untersuchungen über die Entfernungslokalisation der Libellen (Aeschna cyanea). Z Vergl Physiol 3:475–505

    Article  Google Scholar 

  • Bauer T (1981) Prey capture and structure of the visual space of an insect that hunts by light on the litter layer (Notiophilus biguttatus F., Carabidae, Coleoptera). Behav Ecol Sociobiol 8:91–97

    Article  Google Scholar 

  • Burkhardt D, Darnhofer-Demar B, Fischer K (1973) Zum binokularen Entfernungssehen der Insekten. I. Die Struktur des Sehraums von Synsekten. J Comp Physiol A 87:165–188

    Article  Google Scholar 

  • Collett TS (1978) Peering—a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76:237–241

    Google Scholar 

  • Collett TS, Land MF (1978) How hoverflies compute interception courses. J Comp Physiol 125:191–204

    Article  Google Scholar 

  • Eriksson S (1980) Movement parallax and distance perception in the grasshopper (Phaulacridium vittatum). J Exp Biol 86:337–340

    Google Scholar 

  • Frye MA, Olberg RM (1995) Receptive field properties of feature detecting neurons in the dragonfly. J Comp Physiol A 177:569–576

    Article  Google Scholar 

  • Higashi K (1973) Estimation of food consumption for some species of dragonflies. I. Estimating by observation of the frequency of feeding flight of dragonflies. Rep Ebino Biol Lab Kyushu Univ 1:109–116

    Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans Roy Soc B 285:1–59

    Article  CAS  Google Scholar 

  • Hoppenheit M (1964) Beobachtungen zum Beutefangverhalten der Larve von Aeschna cyanea Müll. (Odonata) Zool Anz 172:216–232

    Google Scholar 

  • Kirmse W, Lässig P (1971) Strukturanalogie zwischen dem System der horizontalen Blickbewegungen der Augen beim Menschen und dem System der Blickbewegungen des Kopfes bei Insekten mit Fixationsreaktionen. Biol Zbl 90:175–193

    Google Scholar 

  • Labhart T, Nilsson D-E (1995) The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J Comp Physiol A 176:437–453

    Article  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

  • Miller PL (1995) Visually controlled head movements in perched Anisopteran dragonflies. Odonatologica 24:301–310

    Google Scholar 

  • Olberg RM (1986) Identified target-selective visual interneurons descending from the dragonfly brain. J Comp Physiol A 159:827–840

    Article  Google Scholar 

  • Olberg RM, Worthington AH, Venator KR (2000). Prey pursuit and interception in dragonflies. J Comp Physiol A 186:155–162

    Article  PubMed  CAS  Google Scholar 

  • Rossel S (1983) Binocular stereopsis in an insect. Nature 302:821–822

    Article  Google Scholar 

  • Rossel S (1986) Binocular spatial localization in the preying mantis. J Exp Biol 120:265–281

    Google Scholar 

  • Schwind R (l989) Size and distance perception in compound eyes. In: Hardie R, Stavenga D (eds) Facets of vision: compound eyes from exner to autrum and beyond. Springer Verlag, Berlin, Heidelberg, New York pp 425–444

    Google Scholar 

  • Srinivasan MV, Lehrer M, Zhang SW, Horridge GA (1989) How honeybees measure their distance from objects of unknown size. J Comp Physiol A 165:605–613

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata) III. Adult compound eyes. J Exp Zool 203:61–80

    Article  PubMed  CAS  Google Scholar 

  • Sobel EC (1990) The locust’s use of motion parallax to measure distance. J Comp Physiol A 167:579–588

    Article  PubMed  CAS  Google Scholar 

  • Walcher F, Kral K (1994) Visual deprivation and distance estimation in the praying mantis larva. Physiol Entomol 19:230–240

    Google Scholar 

  • Wallace GK (1959) Visual scanning in the desert locust Schistocerca gregaria Forskal. J Exp Biol 36:512–525

    Google Scholar 

Download references

Acknowledgements

We thank Sandee Goci for her assistance in the fieldwork and Dr Manuel Leal for use of his computer and Videopoint software. This study was supported in part by NSF RUI 0211467 grant to RMO, and by a Union College summer research fellowship to CEB. All experiments complied with the “Principles of animal care”, publication No. 86–23, revised 1985, of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Olberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olberg, R.M., Worthington, A.H., Fox, J.L. et al. Prey size selection and distance estimation in foraging adult dragonflies. J Comp Physiol A 191, 791–797 (2005). https://doi.org/10.1007/s00359-005-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0002-8

Keywords

Navigation