Skip to main content
Log in

Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Floral scent is used by pollinators during foraging to identify and discriminate among flowers. The ability to discriminate among scents may depend on both scent intensity and the ratios of the concentrations of the volatile compounds of a complex mixture rather than on the presence of a few compounds. We used four scent-emitting cultivars of snapdragon (Antirrhinum majus) to test this hypothesis by examining the ability of honeybees to differentiate among their scents. Each cultivar produced three monoterpenes (myrcene, E-β-ocimene, and linalool) and five phenylpropanoids (methylbenzoate, acetophenone, dimethoxytoluene, cis-methylcinnamate, and trans-methylcinnamate). Cultivars were reliably classified by their scents in a canonical discriminant analysis. Honeybees were unable to discriminate among the scents of flowers of the same cultivar in our assay. The ability of honeybees to discriminate among the scents of different cultivars was a function of the intensity of the floral scent. Discrimination was also correlated to the distance among the scents described by the discriminant analysis; the cultivars that had the greatest differences observed in the discriminant analysis were the easiest to discriminate. Our results show that honeybees are capable of using all of the floral volatiles to discriminate subtle differences in scent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson S, Nilsson LA, Groth I, Bergstrom G (2002) Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot J Linn Soc 140(2):129–153

    Article  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Lofstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower specific variation of odor signals influence reproductive success? Evolution 54:1995–2006

    CAS  PubMed  Google Scholar 

  • Azuma H, Toyota M, Asakawa Y (2001) Intraspecific variation of floral scent chemistry in Magnolia kobus DC. (Magnoliaceae). J Plant Res 114(1116):411–422

    Google Scholar 

  • Bergstrom J, Bergstrom G (1989) Floral scents of Bartsia alpina (Scrophulariaceae) – chemical composition and variation between individual plants. Nordic J Bot 9(4):363–365

    Google Scholar 

  • Bhagavan S, and Smith BH (1997) Olfactory conditioning in the honey bee, Apis mellifera: the effects of odor intensity. Physiol Behav 61:107–117

    Article  CAS  PubMed  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical-conditioning of proboscis extension in honey bees. J Comp Psychol 97:107–119

    Article  CAS  PubMed  Google Scholar 

  • Chandra SBC, Smith BH (1998) An analysis of synthetic odor processing of odor mixtures in the honey bee (Apis mellifera). J Exp Biol 201:3113–3121

    PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    Article  CAS  Google Scholar 

  • Deisig N, Lachnit H, Giurfa M (2002) The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem 9(3):112–121

    Article  PubMed  Google Scholar 

  • Ditzen M, Evers JF, Galizia CG (2003) Odor similarity does not influence the time needed for odor processing. Chem Sens 28(9):781–789

    Article  Google Scholar 

  • Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays EA (ed) Insect-plant interactions. CRC Press, Boca Raton, pp 47–81

    Google Scholar 

  • Dobson HEM, Arroyo J, Bergstrom G, Groth I (1997) Interspecific variation in floral fragrances within the genus Narcissus (Amaryllidaceae). Biochem Syst Ecol 25:685–706

    Article  CAS  Google Scholar 

  • Dobson HEM, Bergstrom G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222(1–4):63–87

    CAS  Google Scholar 

  • Dudareva N, Raguso RA, Wang JH, Ross EJ, Pichersky E (1998) Floral scent production in Clarkia brewer. III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol 116(2):599–604

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, Miller B, Bohlmann J (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15(5):1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Free JB (1963) The flower constancy of honey bees. J Anim Ecol 32:119–132

    Google Scholar 

  • Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117(3):435–443

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1994) Modes and origins of mechanical and ethological isolation in angiosperms. Proc Natl Acad Sci USA 91(1):3–10

    Google Scholar 

  • Gross-Isseroff R, Lancet D (1988) Concentration-dependent changes of perceived odor quality. Chem Sens 13(2):191–204

    Google Scholar 

  • Hodges SA, Whittall JB, Fulton M, Yang JY (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am Nat 159(Suppl):S51–S60

    Article  Google Scholar 

  • Hopfield JJ (1999) Odor space and olfactory processing: collective algorithms and neural implementation. Proc Natl Acad Sci USA 96:12506–12511

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen HB, Olsen CE (1994) Influence of climatic factors on rhythmic emission of volatiles from Trifolium repens L flowers in situ. Planta 192:365–371

    CAS  Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis 4th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-L-methionine:benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol 125:1–9

    Article  Google Scholar 

  • Knudsen JT (2002) Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. Am J Bot 89(11):1772–1778

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom LG (1993) Floral scents—a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33(2):253–280

    Article  CAS  Google Scholar 

  • Kunin WE (1993) Sex and the single mustard: population density and pollinator behavior effects on seed-set. Ecology 74(7):2145–2160

    Google Scholar 

  • Kunin W, Iwasa Y (1996) Pollinator foraging strategies in mixed floral arrays: density effects and floral constancy. Theor Popul Biol 49(2):232–263

    Article  PubMed  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12(4):447–456

    Article  Google Scholar 

  • Laing DG, Jinks AL (2001) Psychophysical analysis of complex odor mixtures. Chimia 55(5):413–420

    CAS  Google Scholar 

  • Laing DG, Panhuber H, Willcox ME, Pittman EA (1984) Quality and intensity of binary odor mixtures. Physiol Behav 33(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Levin RA, Raguso RA, McDade LA (2001) Fragrance chemistry and pollinator affinities in Nyctaginaceae. Phytochemistry 58(3):429–440

    Article  CAS  PubMed  Google Scholar 

  • Marfaing P, Rouault J, Laffort P (1989) Effect of the concentration and nature of olfactory stimuli on the proboscis extension of conditioned honey bees (Apis mellifera ligustica). J Insect Physiol 35(12):949–955

    Article  CAS  Google Scholar 

  • Olesen JM, Knudsen JT (1994) Scent profiles of flower colour morphs of Corydalis cava (Fumariaceae) in relation to foraging behaviour of bumblebee queens (Bombus terrestris). Biochem Syst Ecol 22:231–237

    Article  CAS  Google Scholar 

  • Olsson MJ, Cain WS (2000) Psychometrics of odor quality discrimination: method for threshold determination. Chem Sens 25(5):493–499

    Article  CAS  Google Scholar 

  • Pelz C, Gerber B, and Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in the honey bee: roles in discrimination, overshadowing, and memory consolidation. J Exp Biol 200:837–847

    PubMed  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae): localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106(4):1533–1540

    CAS  PubMed  Google Scholar 

  • Pott MB, Pichersky E, Piechulla B (2002) Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. J Plant Physiol 159(8):925–934

    CAS  Google Scholar 

  • Raguso RA, Pichersky E (1995) Floral vlatiles from Clarkia breweri and Clarkia concinna (Onagraceae)—recent evolution of floral scent and moth pollination. Plant Syst Evol 194(1–2):55–67

    CAS  Google Scholar 

  • Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim Behav 64:685–695

    Article  Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmberg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63(3):265–284

    Article  CAS  PubMed  Google Scholar 

  • Rencher AC (1992) Interpretation of canonical discriminant functions, canonical variates, and principal components. Am Stat 46:217–225

    Google Scholar 

  • Ribbands CR (1949) The foraging method of individual honey bees. J Anim Ecol 18:47–66

    Google Scholar 

  • Schiestl FP, Ayasse M (2002) Do changes in floral odor cause speciation in sexually deceptive orchids? Plant Syst Evol 234(1–4):111–119

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Erdmann D, Francke W (1997) Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J Chem Ecol 23:2281–2289

    Google Scholar 

  • Slaa EJ, Cevaal A, Sommeijer MJ (1998) Floral constancy in Trigona stingless bees foraging on artificial flower patches: a comparative study. J Apic Res 37(3):191–198

    Google Scholar 

  • Sokal R, Rohlf FJ (1995) Biometry. WH Freeman, New York

    Google Scholar 

  • Vainstein A, Lewinsohn E, Pichersky E, Weiss D (2001) Floral fragrance: new inroads into an old commodity. Plant Physiol 127(4):1383–1389

    Article  Google Scholar 

  • Wright GA, Smith BH (2004a) Variation in complex olfactory stimuli and its influence on odour recognition. Proc R Soc B 271(1535):147–152

    Article  Google Scholar 

  • Wright GA, Smith BH (2004b) Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera). Chem Sens 29:127–135

    Article  Google Scholar 

  • Wright GA, Skinner BD, Smith BH (2002) The ability of the honey bee, Apis mellifera, to detect and discriminate among the odors of varieties of canola flowers (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J Chem Ecol 28:721–740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Julie Mustard for commenting on the manuscript, Nina Gorenstein for collecting the volatiles, George Keeney for help with rearing snapdragons, and Susan Cobey and Kristin Corey for indoor bee culturing. We would also like to thank Joe Latshaw and Beth Skinner for help with the flask design. This research was funded by grants from NIH-NCRR (9 R01 RR1466) to BHS and from National Science Foundation (IBN-9904910) and Fred Gloeckner Foundation, Inc. to ND. These experiments comply with the Principles of animal care publication No. 86–23, revised 1985, of the National Institute of Health and current American legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine A. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, G.A., Lutmerding, A., Dudareva, N. et al. Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J Comp Physiol A 191, 105–114 (2005). https://doi.org/10.1007/s00359-004-0576-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0576-6

Keywords

Navigation