Skip to main content
Log in

Neuronal control of turtle hindlimb motor rhythms

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The turtle, Trachemys scripta elegans, uses its hindlimb during the rhythmic motor behaviors of walking, swimming, and scratching. For some tasks, one or more motor strategies or forms may be produced, e.g., forward swimming or backpaddling. This review discusses experiments that reveal characteristics of the spinal neuronal networks producing these motor behaviors. Limb-movement studies show shared properties such as rhythmic alternation between hip flexion and hip extension, as well as variable properties such as the timing of knee extension in the cycle of hip movements. Motor-pattern studies show shared properties such as rhythmic alternation between hip flexor and hip extensor motor activities, as well as variable properties such as modifiable timing of knee extensor motor activity in the cycle of hip motor activity. Motor patterns also display variations such as the hip-extensor deletion of rostral scratching. Neuronal-network studies reveal mechanisms responsible for movement and motor-pattern properties. Some interneurons in the spinal cord have shared activities, e.g., each unit is active during more than one behavior, and have distinct characteristics, e.g., each unit is most excited during a specific behavior. Interneuronal recordings during variations support the concept of modular organization of central pattern generators in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4

Similar content being viewed by others

Abbreviations

CPG:

Central pattern generator

EMG:

Electromyographic recording

ENG:

Electroneurographic recording

EPSP:

Excitatory postsynaptic potential

IPSP:

Inhibitory postsynaptic potential

References

  • Alaburda A, Hounsgaard J (2003) Metabotropic modulation of motoneurons by scratch-like spinal network activity. J Neurosci 23:8625–8629

    CAS  PubMed  Google Scholar 

  • Bakker JGM, Crowe A (1982) Multicyclic scratch reflex movements in the terrapin Pseudemys scripta elegans. J Comp Physiol A 145:477–484

    Google Scholar 

  • Berkowitz A (2001a) Broadly tuned spinal neurons for each form of fictive scratching in spinal turtles. J Neurophysiol 86:1017–1025

    CAS  PubMed  Google Scholar 

  • Berkowitz A (2001b) Rhythmicity of spinal neurons activated during each form of fictive scratching in spinal turtles. J Neurophysiol 86:1026–1036

    CAS  PubMed  Google Scholar 

  • Berkowitz A (2002) Both shared and specialized spinal circuitry for scratching and swimming in turtles. J Comp Physiol A 188:225–234

    Article  Google Scholar 

  • Berkowitz A (2003) Morphology and physiology of scratch-related spinal interneurons. In: Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington DC, Program No. 188.4

  • Berkowitz A, Stein PSG (1994a) Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: broad tuning to regions of the body surface. J Neurosci 14:5089–5104

    CAS  PubMed  Google Scholar 

  • Berkowitz A, Stein PSG (1994b) Activity of descending propriospinal axons in the turtle hindlimb enlargement during two forms of fictive scratching: phase analyses. J Neurosci 14:5105–5119

    CAS  PubMed  Google Scholar 

  • Berkowitz A, Yosten GLC, Ballard RM (2004) A distinct morphological class of rhythmic, scratch-related, spinal interneurons in turtles. In: Program and abstracts of the 7th international congress of neuroethology, PO226

  • Callister RJ, Laidlaw DH, Stuart DG (1995) A commentary on the segmental motor system of the turtle: implications for the study of its cellular mechanisms and interactions. J Morphol 225:213–227

    CAS  PubMed  Google Scholar 

  • Carter MC, Smith JL (1986a) Simultaneous control of two rhythmical behaviors. I. Locomotion with the paw-shake response in normal cat. J Neurophysiol 56:171–183

    CAS  PubMed  Google Scholar 

  • Carter MC, Smith JL (1986b) Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with the paw-shake response in spinal cat. J Neurophysiol 56:184–195

    CAS  PubMed  Google Scholar 

  • Crowe A, Linnartz P (1985) Studies on the excitability of the central program generator in the spinal cord of the terrapin Pseudemys scripta elegans. Comp Biochem Physiol 81A:905–909

    Article  Google Scholar 

  • Currie SN (1999) Fictive hindlimb motor patterns evoked by AMPA and NMDA in turtle spinal cord-hindlimb nerve preparations. J Physiol (Paris) 93:199–211

    Article  CAS  Google Scholar 

  • Currie SN, Gonsalves GG (1997) Right-left interactions between rostral scratch networks generate rhythmicity in the preenlargement spinal cord of the turtle. J Neurophysiol 78:3479–3483

    CAS  PubMed  Google Scholar 

  • Currie SN, Gonsalves GG (1999) Reciprocal interactions in the turtle hindlimb enlargement contribute to scratch rhythmogenesis. J Neurophysiol 81:2977–2987

    CAS  PubMed  Google Scholar 

  • Currie SN, Lee S (1996) Sensory-evoked pocket scratch motor patterns in the in vitro turtle spinal cord: reduction of excitability by an N-Methyl-D-Aspartate antagonist. J Neurophysiol 76:81–92

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PSG (1988) Electrical activation of the pocket scratch central pattern generator in the turtle. J Neurophysiol 60:2122–2137

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PSG (1989) Interruptions of fictive scratch motor rhythms by activation of cutaneous flexion reflex afferents in the turtle. J Neurosci 9:488–496

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PSG (1990) Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle. J Neurophysiol 64:1134–1148

    CAS  PubMed  Google Scholar 

  • Currie SN, Stein PSG (1992) Glutamate antagonists applied to midbody spinal cord segments reduce the excitability of the fictive rostral scratch reflex in the turtle. Brain Res 581:91–100

    Article  CAS  PubMed  Google Scholar 

  • Davenport J, Munks SA, Oxford PJ (1984) A comparison of swimming in marine and freshwater turtles. Proc R Soc Lond B Biol Sci 220:447–475

    Google Scholar 

  • Daw N, Stein PSG, Fox K (1993) The role of NMDA receptors in information processing. Annu Rev Neurosci 16:207–222

    Article  CAS  PubMed  Google Scholar 

  • Earhart GM, Stein PSG (2000a) Scratch-swim hybrids in the spinal turtle: blending of rostral scratch and forward swim. J Neurophysiol 83:156–165

    CAS  PubMed  Google Scholar 

  • Earhart GM, Stein PSG (2000b) Step, swim, and scratch motor patterns in the turtle. J Neurophysiol 84:2181–2190

    CAS  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Fetcho JR (1992) The spinal motor system in early vertebrates and some of its evolutionary changes. Brain Behav Evol 40:82–97

    CAS  PubMed  Google Scholar 

  • Fetcho JR, Liu KS (1998) Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci 860:333–345

    CAS  PubMed  Google Scholar 

  • Field EC, Stein PSG (1997a) Spinal cord coordination of hindlimb movements in the turtle: intralimb temporal relationships during scratching and swimming. J Neurophysiol 78:1394–1403

    CAS  PubMed  Google Scholar 

  • Field EC, Stein PSG (1997b) Spinal cord coordination of hindlimb movements in the turtle: interlimb temporal relationships during bilateral scratching and swimming. J Neurophysiol 78:1404–1413

    CAS  PubMed  Google Scholar 

  • Forssberg H, Grillner S, Halbertsma J, Rossignol S (1980) The locomotion of the low spinal cat. II. Interlimb coordination. Acta Physiol Scand 108:283–295

    CAS  PubMed  Google Scholar 

  • Getting PA (1989) Emerging principles governing the operation of neural networks. Annu Rev Neurosci 12:185–204

    Article  CAS  PubMed  Google Scholar 

  • Gillis GB, Blob RW (2001) How muscles accommodate movement in different physical environments: aquatic vs. terrestrial locomotion in vertebrates. Comp Biochem Physiol A 131:61–75

    Article  CAS  Google Scholar 

  • Grillner S (1973) Locomotion in the spinal cat. In: Stein RB, Pearson KG, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum, New York, pp 515–535

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology, Sect. 1, The nervous system, vol 2, Motor control. American Physiological Society, Bethesda, pp 1179–1236

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Georgopoulos AP, Jordan LM (1997) Selection and initiation of motor behavior. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 3–19

    Google Scholar 

  • Hounsgaard J, Kiehn O (1989) Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. J Physiol (Lond) 414:265–282

    CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    CAS  PubMed  Google Scholar 

  • Jordan LM (1991) Brainstem and spinal cord mechanisms for the initiation of locomotion. In: Shimamura M, Grillner S, Edgerton VR (eds) Neurobiological basis of human locomotion. Japan Scientific Societies Press, Tokyo, pp 3–20

    Google Scholar 

  • Juranek J, Currie SN (2000) Electrically evoked fictive swimming in the low-spinal immobilized turtle. J Neurophysiol 83:146–155

    CAS  PubMed  Google Scholar 

  • Katz PS, Frost WN (1996) Intrinsic neuromodulation: altering neuronal circuits from within. Trends Neurosci 19:54–61

    CAS  PubMed  Google Scholar 

  • Keifer J, Stein PSG (1983) In vitro motor program for the rostral scratch reflex generated by the turtle spinal cord. Brain Res 266:148–151

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Butt SJ (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Hounsgaard J, Sillar KT (1997) Basic building blocks of vertebrate spinal central pattern generators. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 47–59

    Google Scholar 

  • Lennard PR (1985) Afferent perturbations during “monopodal” swimming movements in the turtle: phase-dependent cutaneous modulation and proprioceptive resetting of the locomotor rhythm. J Neurosci 5:1434–1445

    CAS  PubMed  Google Scholar 

  • Lennard PR, Stein PSG (1977) Swimming movements elicited by electrical stimulation of turtle spinal cord. I. Low-spinal and intact preparations. J Neurophysiol 40:768–778

    CAS  PubMed  Google Scholar 

  • Lundberg A (1981) Half-centres revisited. Adv Physiol Sci 1:155–167

    CAS  Google Scholar 

  • Mortin LI, Stein PSG (1989) Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle. J Neurosci 9:2285–2296

    CAS  PubMed  Google Scholar 

  • Mortin LI, Stein PSG (1990) Cutaneous dermatomes for the initiation of three forms of the scratch reflex in the spinal turtle. J Comp Neurol 295:515–529

    CAS  PubMed  Google Scholar 

  • Mortin LI, Keifer J, Stein PSG (1985) Three forms of the scratch reflex in the spinal turtle: movement analyses. J Neurophysiol 53:1501–1516

    CAS  PubMed  Google Scholar 

  • Noga BR, Kriellaars DJ, Brownstone RM, Jordan LM (2003) Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J Neurophysiol 90:1464–1478

    PubMed  Google Scholar 

  • O’Donovan MJ, Wenner P, Chub N, Tabak J, Rinzel J (1998) Mechanisms of spontaneous activity in the developing spinal cord and their relevance to locomotion. Ann N Y Acad Sci 860:130–141

    CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Pace CM, Blob RW, Westneat MW (2001) Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. J Exp Biol 204:3261–3271

    CAS  PubMed  Google Scholar 

  • Pearson KG, Rossignol S (1991) Fictive motor patterns in chronic spinal cats. J Neurophysiol 66:1874–1887

    CAS  PubMed  Google Scholar 

  • Perrier JF, Alaburda A, Hounsgaard J (2002) Spinal plasticity mediated by postsynaptic L-type Ca2+ channels. Brain Res Rev 40:223–229

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Soffe SR, Perrins R (1997) Spinal networks controlling swimming in hatchling Xenopus tadpoles. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 83–89

    Google Scholar 

  • Robertson GA, Stein PSG (1988) Synaptic control of hindlimb motoneurones during three forms of the fictive scratch reflex in the turtle. J Physiol (Lond) 404:101–128

    CAS  PubMed  Google Scholar 

  • Robertson GA, Mortin LI, Keifer J, Stein PSG (1985) Three forms of the scratch reflex in the spinal turtle: central generation of motor patterns. J Neurophysiol 53:1517–1534

    CAS  PubMed  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, Sect. 12, Exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 173–216

  • Ruigrok TJH, Crowe A (1984) The organization of motoneurons in the turtle lumbar spinal cord. J Comp Neurol 228:24–37

    CAS  PubMed  Google Scholar 

  • Russo RE, Hounsgaard J (1994) Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels. Neuroscience 61:191–197

    Article  CAS  PubMed  Google Scholar 

  • Russo RE, Nagy F, Hounsgaard J (1997) Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord. J Physiol (Lond) 499:459–474

    Google Scholar 

  • Sherrington CS (1906a) Observations on the scratch-reflex in the spinal dog. J Physiol 34:1–50

    Google Scholar 

  • Sherrington CS (1906b) The integrative action of the nervous system. Yale University Press, New Haven

    Google Scholar 

  • Skydsgaard M, Hounsgaard J (1994) Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro. J Physiol (Lond) 479:233–246

    Google Scholar 

  • Smith JL, Hoy MG, Koshland GF, Phillips DM, Zernicke RF (1985) Intralimb coordination of the paw-shake response: a novel mixed synergy. J Neurophysiol 54:1271–1281

    CAS  PubMed  Google Scholar 

  • Smith JL, Bradley NS, Carter MC, Giuliani CA, Hoy MG, Koshland GF, Zernicke RF (1986) Rhythmical movements of the hindlimbs in spinal cat: considerations for a controlling network. In: Goldberger ME, Gorio A, Murray M (eds) Development and plasticity of the mammalian spinal cord. Liviana Press, Padova, pp 347–361

    Google Scholar 

  • Stein PSG (1978) Swimming movements elicited by electrical stimulation of the turtle spinal cord: the high spinal preparation. J Comp Physiol A 124:203–210

    Google Scholar 

  • Stein PSG (1983) The vertebrate scratch reflex. Symp Soc Exp Biol 37:383–403

    CAS  PubMed  Google Scholar 

  • Stein PSG (1984) Central pattern generators in the spinal cord. In: Davidoff RA (ed) Handbook of the spinal cord, vol 2 and vol 3, anatomy and physiology. Marcel Dekker, New York, pp 647–672

  • Stein PSG (1989) Spinal cord circuits for motor pattern selection in the turtle. Ann NY Acad Sci 563:1–10

    CAS  Google Scholar 

  • Stein PSG (1995) A multiple-level approach to motor pattern generation. In: Ferrell WR, Proske U (eds) Neural control of movement. Plenum, New York, pp 159–165

    Google Scholar 

  • Stein PSG (1999) Central pattern generators and interphyletic awareness. Prog Brain Res 123:259–271

    CAS  PubMed  Google Scholar 

  • Stein PSG, Daniels-McQueen S (2002) Modular organization of turtle spinal interneurons during normal and deletion fictive rostral scratching. J Neurosci 22:6800–6809

    CAS  PubMed  Google Scholar 

  • Stein PSG, Daniels-McQueen S (2003) Timing of knee-related spinal neurons during fictive rostral scratching in the turtle. J Neurophysiol 90:3585–3593

    PubMed  Google Scholar 

  • Stein PSG, Daniels-McQueen S (2004) Variations in motor patterns during fictive rostral scratching in the turtle: knee-related deletions. J Neurophysiol 91:2380–2384

    Article  PubMed  Google Scholar 

  • Stein PSG, Grossman ML (1980) Central program for scratch reflex in turtle. J Comp Physiol A 140:287–294

    Google Scholar 

  • Stein PSG, Johnstone KM (1986) Motor patterns during rostral scratching and forward swimming in the turtle. Soc Neurosci Abstr 12:790

    Google Scholar 

  • Stein PSG, Smith JL (1997) Neural and biomechanical control strategies for different forms of vertebrate hindlimb motor tasks. In: Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) Neurons, networks, and motor behavior. MIT Press, Cambridge, pp 61–73

    Google Scholar 

  • Stein PSG, Robertson GA, Keifer J, Grossman ML, Berenbeim JA, Lennard PR (1982) Motor neuron synaptic potentials during fictive scratch reflex in turtle. J Comp Physiol A 146:401–409

    Google Scholar 

  • Stein PSG, Mortin LI, Robertson GA (1986a) The forms of a task and their blends. In: Grillner S, Stein PSG, Stuart DG, Forssberg H, Herman RM (eds) Neurobiology of vertebrate locomotion. Macmillan, London, pp 201–216

    Google Scholar 

  • Stein PSG, Camp AW, Robertson GA, Mortin LI (1986b) Blends of rostral and caudal scratch reflex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle. J Neurosci 6:2259–2266

    CAS  PubMed  Google Scholar 

  • Stein PSG, Victor JC, Field EC, Currie SN (1995) Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching. J Neurosci 15:4343–4355

    CAS  PubMed  Google Scholar 

  • Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge

    Google Scholar 

  • Stein PSG, McCullough ML, Currie SN (1998a) Reconstruction of flexor/extensor alternation during fictive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection. J Neurosci 18:467–479

    CAS  PubMed  Google Scholar 

  • Stein PSG, McCullough ML, Currie SN (1998b) Spinal motor patterns in the turtle. Ann NY Acad Sci 860:142–154

    CAS  PubMed  Google Scholar 

  • Svirskis G, Hounsgaard J (1997) Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. J Neurophysiol 78:1740–1742

    CAS  PubMed  Google Scholar 

  • Thorstensson A (1986) How is the normal locomotor program modified to produce backward walking? Exp Brain Res 61:664–668

    Article  CAS  PubMed  Google Scholar 

  • Tresch MC, Saltiel P, d’Avella A, Bizzi E (2002) Coordination and localization in spinal motor systems. Brain Res Rev 40:66–79

    Article  PubMed  Google Scholar 

  • Walker WF (1971) A structural and functional analysis of walking in the turtle, Chrysemys picta marginata. J Morphol 134:195–214

    PubMed  Google Scholar 

  • Walker WF (1973) The locomotor apparatus of testudines. In: Gans C, Parsons TS (eds) Biology of the reptilia, vol 4. Academic Press, New York, pp 1–100

  • Walker WF (1979) Locomotion. In: Harless M, Morlock H (eds) Turtles, perspectives and research. Wiley, New York, pp 435–454

    Google Scholar 

  • Wilson DM (1972) Genetic and sensory mechanisms for locomotion and orientation in animals. Am Sci 60:358–365

    CAS  PubMed  Google Scholar 

  • Winter DA, Pluck N, Yang JF (1989) Backward walking: a simple reversal of forward walking? J Mot Behav 21:291–305

    CAS  PubMed  Google Scholar 

  • Zug GR (1971) Buoyancy, locomotion, morphology of the pelvic girdle and hindlimb, and systematics of cryptodiran turtles. Misc Publ Mus Zool Univ Mich 142:1–98

    Google Scholar 

Download references

Acknowledgements

Research in the Stein laboratory is supported by NIH grant NS-30786 to P.S.G.S. Experiments in the Stein laboratory comply with the Principles of animal care, publication No. 86-23, revised 1985, of the National Institutes of Health and with the current laws of the USA. I thank Sarah Siegel and Dr. Ari Berkowitz, Dr. Susan Daniels-McQueen, Dr. Gammon Earhart, and Dr. Edelle Field-Fote for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. G. Stein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, P.S.G. Neuronal control of turtle hindlimb motor rhythms. J Comp Physiol A 191, 213–229 (2005). https://doi.org/10.1007/s00359-004-0568-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0568-6

Keywords

Navigation