Skip to main content
Log in

Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The weakly electric fish Gymnotus carapo emits a triphasic electric organ discharge generated by muscle-derived electrocytes, which is modified by environmental and physiological factors. Two electrode current clamp recordings in an in vitro preparation showed that Gymnotus electrocytes fired repetitively and responded with plateau potentials when depolarized. This electrophysiological behavior has never been observed in electrocytes from related species. Two types of plateaus with different thresholds and amplitudes were evoked by depolarization when Na+-dependent currents were isolated in a K+- and Ca2+-free solution containing TEA and 4-AP. Two electrode voltage clamp recordings revealed a classical fast activating–inactivating Na+ current and two persistent Na+-dependent currents with voltage-dependencies consistent with the action potential (AP) and the two plateaus observed under current clamp, respectively. The three currents, the APs and the plateaus were reduced by TTX, and were absent in Na+-free solution. The different Na+-dependent currents in Gymnotus electrocytes may be targets for the modifications of the electric organ discharge mediated by environmental and physiological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A–F
Fig. 3A–D
Fig. 4
Fig. 5A–C
Fig. 6A–E

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminopyridine

AP:

Action potential

EO:

Electric organ

EOD:

Electric organ discharge

I-V/V-I:

Current–voltage/voltage–current

MP:

Membrane potential

PSP:

Postsynaptic potential

TEA:

Tetraethylammonium chloride

TTX:

Tetrodotoxin

References

  • Almers W, Palade PT (1981) Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. J Physiol (London) 312:159–176

    CAS  Google Scholar 

  • Araque A, Buño W (1994) Novel hyperpolarization-activated K+ current mediates anomalous rectification in crayfish muscle. J Neurosci 14:399–408

    CAS  PubMed  Google Scholar 

  • Ardanaz JL, Silva A, Macadar O (2001) Sensitivity of EOD waveform in Gymnotus carapo: a peripheral phenomenon modulated by steroid hormones. J Comp Physiol A 187:853–864

    Article  CAS  Google Scholar 

  • Barrio LC, Araque A, Buño W (1994) Participation of voltage-gated conductances on the response succeeding inhibitory synaptic potentials in the crayfish slowly adapting stretch receptor neuron. J Neurophysiol 72:1140–1151

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Grundfest H (1959) Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol 42:1067–1104

    Article  CAS  PubMed  Google Scholar 

  • Bennett MVL, Grundfest H (1966) Analysis of depolarizing and hyperpolarizing inactivation responses in Gymnotid electroplaques. J Gen Physiol 50:141–169

    Article  CAS  PubMed  Google Scholar 

  • Black-Cleworth P (1970) The role of electric discharges in the non-reproductive social behavior of Gymnotus carapo. Anim Behav Monogr 3:1–77

    Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Introduction. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 1–12

    Google Scholar 

  • Caputi AA (1999) The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern. J Exp Biol 202:1229–1241

    PubMed  Google Scholar 

  • Caputi A, Macadar O, Trujillo-Cenóz O (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. III. Analysis of the fish body as an electric source. J Comp Physiol A 165:361–370

    Google Scholar 

  • Caputi A, Silva A, Macadar O (1998) The electric organ discharge of Brachyhypopomus pinnicaudatus: the effects of environmental variables on waveform generation. Brain Behav Evol 52:148–158

    Article  CAS  PubMed  Google Scholar 

  • Falconi A, Borde M, Hernández-Cruz A, Morales FR (1995) Mauthner cell-initiated abrupt increase of the electric organ discharge in the weakly electric fish Gymnotus carapo. J Comp Physiol A 176:679–689

    Article  Google Scholar 

  • Ferrari MB, Zakon HH (1993) Conductances contributing to the action potential of Sternopygus electrocytes. J Comp Physiol A 173:281–292

    CAS  PubMed  Google Scholar 

  • Ferrari MB, McAnelly ML, Zakon HH (1995) Individual variation in and androgen-modulation of the sodium current in electric organ. J Neurosci 15:4023–4032

    CAS  PubMed  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2002) Evolution of voltage-gated Na+ channels. J Exp Biol 205:575–584

    CAS  PubMed  Google Scholar 

  • Hagedorn M (1986) The ecology, courtship and mating of gymnotiform electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 497–525

    Google Scholar 

  • Hagedorn M, Carr C (1985) Single electrocytes produce a sexually dimorphic signal in South American electric fish, Hypopomus occidentalis (Gymnotiformes, Hypopomidae). J Comp Physiol A 156:511–523

    Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hopkins CD (1999) Design features for electric communication. J Exp Biol 202:1217–1228

    PubMed  Google Scholar 

  • Lopreato GF, Lu Y, Southwell A, Atkinson NS, Hillis DM, Wilcox TP, Zakon HH (2001) Evolution and divergence of sodium channel genes in vertebrates. Proc Natl Acad Sci USA 98:7588–7592

    Article  CAS  PubMed  Google Scholar 

  • Macadar O, Lorenzo D, Velluti JC (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. II. Electrophysiological properties of single electrocytes. J Comp Physiol A 165:353–360

    Google Scholar 

  • McAnelly ML, Zakon HH (2000) Coregulation of voltage-dependent kinetics of Na+ and K+ currents in electric organ. J Neurosci 20: 3408–3414

    CAS  PubMed  Google Scholar 

  • McAnelly ML, Silva A, Zakon HH (2003) Cyclic AMP modulates electrical signaling in a weakly electric fish. J Comp Physiol A 189:273–282

    CAS  Google Scholar 

  • Nakamura Y, Nakajima S, Grundfest H (1965) Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques of Electrophorus electricus. J Gen Physiol 49:321–349

    Article  Google Scholar 

  • Niu XW, Meech RW (2000) Potassium inhibition of sodium-activated potassium (K(Na)) channels in guinea-pig ventricular myocytes. J Physiol 526:81–90

    Article  CAS  PubMed  Google Scholar 

  • Russell DF, Hartline DK (1982) Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus. J Neurophysiol 48:914–937

    CAS  PubMed  Google Scholar 

  • Schuster S (2000) Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo. J Exp Biol 203:1433–1446

    PubMed  Google Scholar 

  • Shenkel S, Sigworth FJ (1991) Patch recording from the electrocytes of Electrophorus electricus. J Gen Physiol 97:1013–1041

    Article  CAS  PubMed  Google Scholar 

  • Sierra F, Lorenzo D, Macadar O, Buño W (1995) N-type Ca2+ channels mediate transmitter release at the electromotoneuron-electrocyte synapses of the weakly electric fish Gymnotus carapo. Brain Res 683:215–220

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Quintana L, Galeano M, Errandonea P, Macadar O (1999) Water temperature sensitivity of EOD waveform in Brachyhypopomus pinnicaudatus. J Comp Physiol A 185:187–197

    Article  Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA (1989) Waveform generation of the electric organ discharge in Gymnotus carapo. I. Morphology and innervation of the electric organ. J Comp Physiol A 165:343–351

    Google Scholar 

  • Trujillo-Cenóz O, Echagüe JA, Macadar O (1984) Innervation pattern and electric organ discharge waveform in Gymnotus carapo (Teleostei: Gymnotiformes). J Neurobiol 15:273–281

    PubMed  Google Scholar 

  • Yuan A, Santi CM, Wei A, Wang ZW, Pollak K (2003) The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron 37:765–773

    Article  CAS  PubMed  Google Scholar 

  • Zakon HH (1998) The effects of steroid hormones on electrical activity of excitable cells. Trends Neurosci 21:202–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CSIC (Proyecto de Iniciación to F.S.). V. Comas was supported by a contract under a CSIC I+D grant to O.Macadar. The travel of Drs. O. Macadar and W. Buño was funded by a grant from Programa de Colaboración Internacional con Hispanoamérica, Ministerio de Educación y Ciencia/Consejo Superior de Investigación Científica, Spain. Special thanks to Dr. Ana Silva for critical reading of the manuscript. The experiments comply with the “Principles of Animal Care”, publication no. 86–23, revised in 1985, of The National Institutes of Health and also with the guidelines of the Comisión Honoraria de Experimentación Animal, Universidad de la República, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Sierra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sierra, F., Comas, V., Buño, W. et al. Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo. J Comp Physiol A 191, 1–11 (2005). https://doi.org/10.1007/s00359-004-0567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-004-0567-7

Keywords

Navigation